ترغب بنشر مسار تعليمي؟ اضغط هنا

Magic and tune-out wavelengths for atomic francium

113   0   0.0 ( 0 )
 نشر من قبل Umakanth Dammalapati Dr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The frequency dependent polarizabilities of the francium atom are calculated from the available data of energy levels and transition rates. Magic wavelengths for the state insensitive optical dipole trapping are identified from the calculated light shifts of the $7s~^2S_{1/2}$, $7p~^2P_{1/2, 3/2}$ and $8s~^{2}S_{1/2}$ levels of the $7s~^{2}S_{1/2}-7p~^{2}P_{1/2,3/2}$ and $7s~^{2}S_{1/2}-8s~^{2}S_{1/2}$ transitions, respectively. Wavelengths in the ultraviolet, visible and near infrared region is identified that are suitable for cooling and trapping. Magic wavelengths between 600-700~nm and 700-1000~nm region, which are blue and red detuned with the $7s-7p$ and $7s-8s$ transitions are feasible to implement as lasers with sufficient power are available. In addition, we calculated the tune-out wavelengths where the ac polarizability of the ground $7s~^{2}S_{1/2}$ state in francium is zero. These results are beneficial as laser cooled and trapped francium has been in use for fundamental symmetry investigations like searches for an electron permanent electric dipole moment in an atom and for atomic parity non-conservation.



قيم البحث

اقرأ أيضاً

Accurate values for atomic dipole matrix elements are useful in many areas of physics, and in particular for interpreting experiments such as atomic parity violation. Obtaining accurate matrix element values is a challenge for both experiment and the ory. A new technique that can be applied to this problem is tune-out spectroscopy, which is the measurement of light wavelengths where the electric polarizability of an atom has a zero. Using atom interferometry methods, tune-out wavelengths can be measured very accurately. Their values depend on the ratios of various dipole matrix elements and are thus useful for constraining theory and broadening the application of experimental values. Tune-out wavelength measurements to date have focused on zeros of the scalar polarizability, but in general the vector polarizability also contributes. We show here that combined measurements of the vector and scalar polarizabilities can provide more detailed information about the matrix element ratios, and in particular can distinguish small contributions from the atomic core and the valence tail states. These small contributions are the leading error sources in current parity violation calculations for cesium.
We present additional magic wavelengths ($lambda_{rm{magic}}$) for the clock transitions in the alkaline-earth metal ions considering circular polarized light aside from our previously reported values in [J. Kaur et al., Phys. Rev. A {bf 92}, 031402( R) (2015)] for the linearly polarized light. Contributions from the vector component to the dynamic dipole polarizabilities ($alpha_d(omega)$) of the atomic states associated with the clock transitions play major roles in the evaluation of these $lambda_{rm{magic}}$, hence facilitating in choosing circular polarization of lasers in the experiments. Moreover, the actual clock transitions in these ions are carried out among the hyperfine levels. The $lambda_{rm{magic}}$ values in these hyperfine transitions are estimated and found to be different from $lambda_{rm{magic}}$ for the atomic transitions due to different contributions coming from the vector and tensor part of $alpha_d(omega)$. Importantly, we also present $lambda_{rm{magic}}$ values that depend only on the scalar component of $alpha_d(omega)$ for their uses in a specially designed trap geometry for these ions so that they can be used unambiguously among any hyperfine levels of the atomic states of the clock transitions. We also present $alpha_d(omega)$ values explicitly at the 1064 nm for the atomic states associated with the clock transitions which may be useful for creating high-field seeking traps for the above ions using the Nd:YAG laser. The tune out wavelengths at which the states would be free from the Stark shifts are also presented. Accurate values of the electric dipole matrix elements required for these studies are given and trends of electron correlation effects in determining them are also highlighted.
We demonstrate a versatile, rotational-state dependent trapping scheme for the ground and first excited rotational states of $^{23}$Na$^{40}$K molecules. Close to the rotational manifold of a narrow electronic transition, we determine tune-out freque ncies where the polarizability of one state vanishes while the other remains finite, and a magic frequency where both states experience equal polarizability. The proximity of these frequencies of only 10 GHz allows for dynamic switching between different trap configurations in a single experiment, while still maintaining sufficiently low scattering rates.
65 - A. Roy , S. De , Bindiya Arora 2017
We present precise values of the dipole polarizabilities ($alpha$) of the ground $rm [4f^{14}6s] ~ ^2S_{1/2}$ and metastable $rm [4f^{14} 5d] ~ ^2D_{3/2}$ states of Yb$^+$, that are %vital {bf important} in reducing systematics in the clock frequency of the $rm[4f^{14}6s] ~ ^2S_{1/2} rightarrow [4f^{14}5d] ~ ^2D_{3/2}$ transition. The static values of $alpha$ for the ground and $rm [4f^{14} 5d] ~ ^2D_{3/2}$ states are estimated to be $9.8(1) times 10^{-40} ,,rm Jm^2V^{-2}$ and $17.6(5) times 10^{-40},, rm Jm^2V^{-2}$, respectively, while the tensor contribution to the $rm [4f^{14} 5d] ~ ^2D_{3/2}$ state as $- 12.3(3) times 10^{-40},, rm Jm^2V^{-2}$ compared to the experimental value $-13.6(2.2) times 10^{-40},,rm Jm^2V^{-2}$. This corresponds to the differential scalar polarizability value of the above transition as $-7.8$(5)$,times, 10^{-40},rm Jm^2 V^{-2}$ in contrast to the available experimental value $-6.9$(1.4)$,times, 10^{-40}$,, $rm Jm^2V^{-2}$. This results in the black-body radiation (BBR) shift of the clock transition as $-0.44(3)$ Hz at the room temperature, which is large as compared to the previously estimated values. Using the dynamic $alpha$ values, we report the tune-out and magic wavelengths that could be of interest to subdue %major systematics due to the Stark shifts and for constructing lattice optical clock using Yb$^+$.
We present the first measurement for helium atoms of the tune-out wavelength at which the atomic polarizability vanishes. We utilise a novel, highly sensitive technique for precisely measuring the effect of variations in the trapping potential of con fined metastable ($2^{3}S_{1}$) helium atoms illuminated by a perturbing laser light field. The measured tune-out wavelength of 413.0938($9_{Stat.}$)($20_{Syst.}$) nm compares well with the value predicted by a theoretical calculation (413.02(9) nm) which is sensitive to finite nuclear mass, relativistic, and quantum electro-dynamic (QED) effects. This provides motivation for more detailed theoretical investigations to test QED.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا