ﻻ يوجد ملخص باللغة العربية
Spectral distortions of the Cosmic Microwave Background (CMB) offer the possibility of probing processes which occurred during the evolution of our Universe going back up to Z$simeq 10^7$. Unfortunately all the attempts so far carried out for detecting distortions failed. All of them were based on comparisons among absolute measurements of the CMB temperature at different frequencies. We suggest a different approach: measurements of the frequency derivative of the CMB temperature over large frequency intervals instead of observations of the absolute temperature at few, well separated, frequencies as frequently done in the past, and, direct measurements of the foregrounds which hinder bobservations, at the same site and with the same radiometer prepared for the search of CMB distortions. We discuss therefore the perspectives of new observations in the next years from the ground, at very special sites, or in space as independent missions or part of other CMB projects
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both prim
[Abridged] The measurement of the polarization of the Cosmic Microwave Background radiation is one of the current frontiers in cosmology. In particular, the detection of the primordial B-modes, could reveal the presence of gravitational waves in the
We present a method for beam deconvolution for cosmic microwave background (CMB) anisotropy measurements. The code takes as input the time-ordered data, along with the corresponding detector pointings and known beam shapes, and produces as output the
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope. Located at an elevation of 5190 m, ACTPol measures the Cosmic Microwave Background (CMB) temperature and polarization with ar
We present a semi-analytical method to investigate the systematic effects and statistical uncertainties of the calculated angular power spectrum when incomplete spherical maps are used. The computed power spectrum suffers in particular a loss of angu