ﻻ يوجد ملخص باللغة العربية
Next-generation RNA sequencing (RNA-seq) technology has been widely used to assess full-length RNA isoform abundance in a high-throughput manner. RNA-seq data offer insight into gene expression levels and transcriptome structures, enabling us to better understand the regulation of gene expression and fundamental biological processes. Accurate isoform quantification from RNA-seq data is challenging due to the information loss in sequencing experiments. A recent accumulation of multiple RNA-seq data sets from the same tissue or cell type provides new opportunities to improve the accuracy of isoform quantification. However, existing statistical or computational methods for multiple RNA-seq samples either pool the samples into one sample or assign equal weights to the samples when estimating isoform abundance. These methods ignore the possible heterogeneity in the quality of different samples and could result in biased and unrobust estimates. In this article, we develop a method, which we call joint modeling of multiple RNA-seq samples for accurate isoform quantification (MSIQ), for more accurate and robust isoform quantification by integrating multiple RNA-seq samples under a Bayesian framework. Our method aims to (1) identify a consistent group of samples with homogeneous quality and (2) improve isoform quantification accuracy by jointly modeling multiple RNA-seq samples by allowing for higher weights on the consistent group. We show that MSIQ provides a consistent estimator of isoform abundance, and we demonstrate the accuracy and effectiveness of MSIQ compared with alternative methods through simulation studies on D. melanogaster genes. We justify MSIQs advantages over existing approaches via application studies on real RNA-seq data from human embryonic stem cells, brain tissues, and the HepG2 immortalized cell line.
RNA-seq has rapidly become the de facto technique to measure gene expression. However, the time required for analysis has not kept up with the pace of data generation. Here we introduce Sailfish, a novel computational method for quantifying the abund
RNA-Seq technology allows for studying the transcriptional state of the cell at an unprecedented level of detail. Beyond quantification of whole-gene expression, it is now possible to disentangle the abundance of individual alternatively spliced tran
Chemical mapping methods probe RNA structure by revealing and leveraging correlations of a nucleotides structural accessibility or flexibility with its reactivity to various chemical probes. Pioneering work by Lucks and colleagues has expanded this m
Background: High-throughput techniques bring novel tools but also statistical challenges to genomic research. Identifying genes with differential expression between different species is an effective way to discover evolutionarily conserved transcript
High-confidence prediction of complex traits such as disease risk or drug response is an ultimate goal of personalized medicine. Although genome-wide association studies have discovered thousands of well-replicated polymorphisms associated with a bro