ترغب بنشر مسار تعليمي؟ اضغط هنا

A mixed model approach for joint genetic analysis of alternatively spliced transcript isoforms using RNA-Seq data

166   0   0.0 ( 0 )
 نشر من قبل Barbara Rakitsch
 تاريخ النشر 2012
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

RNA-Seq technology allows for studying the transcriptional state of the cell at an unprecedented level of detail. Beyond quantification of whole-gene expression, it is now possible to disentangle the abundance of individual alternatively spliced transcript isoforms of a gene. A central question is to understand the regulatory processes that lead to differences in relative abundance variation due to external and genetic factors. Here, we present a mixed model approach that allows for (i) joint analysis and genetic mapping of multiple transcript isoforms and (ii) mapping of isoform-specific effects. Central to our approach is to comprehensively model the causes of variation and correlation between transcript isoforms, including the genomic background and technical quantification uncertainty. As a result, our method allows to accurately test for shared as well as transcript-specific genetic regulation of transcript isoforms and achieves substantially improved calibration of these statistical tests. Experiments on genotype and RNA-Seq data from 126 human HapMap individuals demonstrate that our model can help to obtain a more fine-grained picture of the genetic basis of gene expression variation.



قيم البحث

اقرأ أيضاً

Background: Since the invention of next-generation RNA sequencing (RNA-seq) technologies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The a nalysis of RNA-seq data at four different levels (samples, genes, transcripts, and exons) involve multiple statistical and computational questions, some of which remain challenging up to date. Results: We review RNA-seq analysis tools at the sample, gene, transcript, and exon levels from a statistical perspective. We also highlight the biological and statistical questions of most practical considerations. Conclusion: The development of statistical and computational methods for analyzing RNA- seq data has made significant advances in the past decade. However, methods developed to answer the same biological question often rely on diverse statical models and exhibit different performance under different scenarios. This review discusses and compares multiple commonly used statistical models regarding their assumptions, in the hope of helping users select appropriate methods as needed, as well as assisting developers for future method development.
Next-generation RNA sequencing (RNA-seq) technology has been widely used to assess full-length RNA isoform abundance in a high-throughput manner. RNA-seq data offer insight into gene expression levels and transcriptome structures, enabling us to bett er understand the regulation of gene expression and fundamental biological processes. Accurate isoform quantification from RNA-seq data is challenging due to the information loss in sequencing experiments. A recent accumulation of multiple RNA-seq data sets from the same tissue or cell type provides new opportunities to improve the accuracy of isoform quantification. However, existing statistical or computational methods for multiple RNA-seq samples either pool the samples into one sample or assign equal weights to the samples when estimating isoform abundance. These methods ignore the possible heterogeneity in the quality of different samples and could result in biased and unrobust estimates. In this article, we develop a method, which we call joint modeling of multiple RNA-seq samples for accurate isoform quantification (MSIQ), for more accurate and robust isoform quantification by integrating multiple RNA-seq samples under a Bayesian framework. Our method aims to (1) identify a consistent group of samples with homogeneous quality and (2) improve isoform quantification accuracy by jointly modeling multiple RNA-seq samples by allowing for higher weights on the consistent group. We show that MSIQ provides a consistent estimator of isoform abundance, and we demonstrate the accuracy and effectiveness of MSIQ compared with alternative methods through simulation studies on D. melanogaster genes. We justify MSIQs advantages over existing approaches via application studies on real RNA-seq data from human embryonic stem cells, brain tissues, and the HepG2 immortalized cell line.
The analysis of differential gene expression from RNA-Seq data has become a standard for several research areas mainly involving bioinformatics. The steps for the computational analysis of these data include many data types and file formats, and a wi de variety of computational tools that can be applied alone or together as pipelines. This paper presents a review of differential expression analysis pipeline, addressing its steps and the respective objectives, the principal methods available in each step and their properties, bringing an overview in an organized way in this context. In particular, this review aims to address mainly the aspects involved in the differentially expressed gene (DEG) analysis from RNA sequencing data (RNA-Seq), considering the computational methods and its properties. In addition, a timeline of the evolution of computational methods for DEG is presented and discussed, as well as the relationships existing between the main computational tools are presented by an interaction network. A discussion on the challenges and gaps in DEG analysis is also highlighted in this review.
The phenotypic consequences of individual mutations are modulated by the wild type genetic background in which they occur.Although such background dependence is widely observed, we do not know whether general patterns across species and traits exist, nor about the mechanisms underlying it. We also lack knowledge on how mutations interact with genetic background to influence gene expression, and how this in turn mediates mutant phenotypes. Furthermore, how genetic background influences patterns of epistasis remains unclear. To investigate the genetic basis and genomic consequences of genetic background dependence of the scallopedE3 allele on the Drosophila melanogaster wing, we generated multiple novel genome level datasets from a mapping by introgression experiment and a tagged RNA gene expression dataset. In addition we used whole genome re-sequencing of the parental lines two commonly used laboratory strains to predict polymorphic transcription factor binding sites for SD. We integrated these data with previously published genomic datasets from expression microarrays and a modifier mutation screen. By searching for genes showing a congruent signal across multiple datasets, we were able to identify a robust set of candidate loci contributing to the background dependent effects of mutations in sd. We also show that the majority of background-dependent modifiers previously reported are caused by higher-order epistasis, not quantitative non-complementation. These findings provide a useful foundation for more detailed investigations of genetic background dependence in this system, and this approach is likely to prove useful in exploring the genetic basis of other traits as well.
RNA-seq has rapidly become the de facto technique to measure gene expression. However, the time required for analysis has not kept up with the pace of data generation. Here we introduce Sailfish, a novel computational method for quantifying the abund ance of previously annotated RNA isoforms from RNA-seq data. Sailfish entirely avoids mapping reads, which is a time-consuming step in all current methods. Sailfish provides quantification estimates much faster than existing approaches (typically 20-times faster) without loss of accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا