ترغب بنشر مسار تعليمي؟ اضغط هنا

The Population of Compact Radio Sources in the Orion Nebula Cluster

167   0   0.0 ( 0 )
 نشر من قبل Jan Forbrich
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a deep centimeter-wavelength catalog of the Orion Nebula Cluster (ONC), based on a 30h single-pointing observation with the Karl G. Jansky Very Large Array in its high-resolution A-configuration using two 1 GHz bands centered at 4.7 GHz and 7.3 GHz. A total of 556 compact sources were detected in a map with a nominal rms noise of 3 muJy/bm, limited by complex source structure and the primary beam response. Compared to previous catalogs, our detections increase the sample of known compact radio sources in the ONC by more than a factor of seven. The new data show complex emission on a wide range of spatial scales. Following a preliminary correction for the wideband primary-beam response, we determine radio spectral indices for 170 sources whose index uncertainties are less than +/-0.5. We compare the radio to the X-ray and near-infrared point-source populations, noting similarities and differences.

قيم البحث

اقرأ أيضاً

(Abridged) Context: Both X-ray and radio observations offer insight into the high-energy processes of young stellar objects (YSOs). The observed thermal X-ray emission can be accompanied by both thermal and nonthermal radio emission. Due to variabili ty, simultaneous X-ray and radio observations are a priori required, but results have been inconclusive. Aims: We use archival X-ray and radio observations of the Orion Nebula Cluster (ONC) to significantly enlarge the sample size of known YSOs with both X-ray and radio detections. Methods: We study the ONC using multi-epoch non-simultaneous archival Chandra X-ray and NRAO Very Large Array (VLA) single-band radio data. The multiple epochs allow us to reduce the impact of variability by obtaining approximated quiescent fluxes. Results: We find that only a small fraction of the X-ray sources (7%) have radio counterparts, even if 60% of the radio sources have X-ray counterparts. The radio flux density is typically too low to distinguish thermal and nonthermal radio sources. Only a small fraction of the YSOs with detections in both bands are compatible with the empirical Guedel-Benz (GB) relation. Most of the sources not compatible with the GB relation are proplyds, and thus likely thermal sources, but only a fraction of the proplyds is detected in both bands, such that the role of these sources is inconclusive. Conclusions: While the radio sources appear to be globally unrelated to the X-ray sources, the X-ray dataset clearly is much more sensitive than the radio data. We find tentative evidence that known non-thermal radio sources and saturated X-ray sources are indeed close to the empirical relation, even if skewed to higher radio luminosities, as they are expected to be. Most of the sources that are clearly incompatible with the empirical relation are proplyds which could instead plausibly be thermal radio sources.
89 - Imants Platais 2020
We present a catalog of high-precision proper motions in the Orion Nebula Cluster (ONC), based on Treasury Program observations with the Hubble Space Telescopes (HST) ACS/WFC camera. Our catalog contains 2,454 objects in the magnitude range of $14.2< m_{rm F775W}<24.7$, thus probing the stellar masses of the ONC from $sim$0.4 $M_odot$ down to $sim$0.02 $M_odot$ over an area of $sim$550 arcmin$^2$. We provide a number of internal velocity dispersion estimates for the ONC that indicate a weak dependence on the stellar location and mass. There is good agreement with the published velocity dispersion estimates, although nearly all of them (including ours at $sigma_{v,x}=0.94$ and $sigma_{v,y}=1.25$ mas yr$^{-1}$) might be biased by the overlapping young stellar populations of Orion A. We identified 4 new ONC candidate runaways based on HST and the Gaia DR2 data, all with masses less than $sim$1 $M_odot$. The total census of known candidate runaway sources is 10 -- one of the largest samples ever found in any Milky Way open star cluster. Surprisingly, none of them has the tangential velocity exceeding 20 km s$^{-1}$. If most of them indeed originated in the ONC, it may compel re-examination of dynamical processes in very young star clusters. It appears that the mass function of the ONC is not significantly affected by the lost runaways.
We explore scenarios for the dynamical ejection of stars BN and x from source I in the Kleinmann-Low nebula of the Orion Nebula Cluster (ONC), which is important for being the closest region of massive star formation. This ejection would cause source I to become a close binary or a merger product of two stars. We thus consider binary-binary encounters as the mechanism to produce this event. By running a large suite of $N$-body simulations, we find that it is nearly impossible to match the observations when using the commonly adopted masses for the participants, especially a source I mass of $7:{rm{M}}_odot$. The only way to recreate the event is if source I is more massive, i.e., $sim20:{rm{M}}_odot$. However, even in this case, the likelihood of reproducing the observed system is low. We discuss the implications of these results for understanding this important star-forming region.
75 - Gaspard Duchene 2018
We present a survey for the tightest visual binaries among 0.3-2 Msun members the Orion Nebula Cluster (ONC). Among 42 targets, we discovered 13 new 0.025-0.15 companions. Accounting for the Branch bias, we find a companion star fraction (CSF) in the 10-60 au range of 21+8/-5%, consistent with that observed in other star-forming regions (SFRs) and twice as high as among field stars; this excess is found with a high level of confidence. Since our sample is dominated by disk-bearing targets, this indicates that disk disruption by close binaries is inefficient, or has not yet taken place, in the ONC. The resulting separation distribution in the ONC drops sharply outside 60,au. These findings are consistent with a scenario in which the initial multiplicity properties, set by the star formation process itself, are identical in the ONC and in other SFRs and subsequently altered by the clusters dynamical evolution. This implies that the fragmentation process does not depend on the global properties of a molecular cloud, but on the local properties of prestellar cores, and that the latter are self-regulated to be nearly identical in a wide range of environments. These results, however, raise anew the question of the origin of field stars as the tight binaries we have discovered will not be destroyed as the ONC dissolves into the galactic field. It thus appears that most field stars formed in regions differ from well-studied SFRs in the Solar neighborhood, possibly due to changes in core fragmentation on Gyr timescales.
155 - K. Kubiak , J. Alves , H. Bouy 2016
This paper continues our study of the foreground population to the Orion molecular clouds. The goal is to characterize the foreground population north of NGC 1981 and to investigate the star formation history in the large Orion star-forming region. W e focus on a region covering about 25 square degrees, centered on the $epsilon$ Orionis supergiant (HD 37128, B0,Ia) and covering the Orion Belt asterism. We used a combination of optical (SDSS) and near-infrared (2MASS) data, informed by X-ray (textit{XMM-Newton}) and mid-infrared (WISE) data, to construct a suite of color-color and color-magnitude diagrams for all available sources. We then applied a new statistical multiband technique to isolate a previously unknown stellar population in this region. We identify a rich and well-defined stellar population in the surveyed region that has about 2,000 objects that are mostly M stars. We infer the age for this new population to be at least 5, Myr and likely $sim10$,Myr and estimate a total of about 2,500 members, assuming a normal IMF. This new population, which we call the Orion Belt population, is essentially extinction-free, disk-free, and its spatial distribution is roughly centered near $epsilon$ Ori, although substructure is clearly present. The Orion Belt population is likely the low-mass counterpart to the Ori OB Ib subgroup. Although our results do not rule out Blaauws sequential star formation scenario for Orion, we argue that the recently proposed blue streams scenario provides a better framework on which one can explain the Orion star formation region as a whole. We speculate that the Orion Belt population could represent the evolved counterpart of an Orion nebula-like cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا