ترغب بنشر مسار تعليمي؟ اضغط هنا

HST astrometry in the Orion Nebula Cluster: census of low-mass runaways

90   0   0.0 ( 0 )
 نشر من قبل Andrea Bellini
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Imants Platais




اسأل ChatGPT حول البحث

We present a catalog of high-precision proper motions in the Orion Nebula Cluster (ONC), based on Treasury Program observations with the Hubble Space Telescopes (HST) ACS/WFC camera. Our catalog contains 2,454 objects in the magnitude range of $14.2<m_{rm F775W}<24.7$, thus probing the stellar masses of the ONC from $sim$0.4 $M_odot$ down to $sim$0.02 $M_odot$ over an area of $sim$550 arcmin$^2$. We provide a number of internal velocity dispersion estimates for the ONC that indicate a weak dependence on the stellar location and mass. There is good agreement with the published velocity dispersion estimates, although nearly all of them (including ours at $sigma_{v,x}=0.94$ and $sigma_{v,y}=1.25$ mas yr$^{-1}$) might be biased by the overlapping young stellar populations of Orion A. We identified 4 new ONC candidate runaways based on HST and the Gaia DR2 data, all with masses less than $sim$1 $M_odot$. The total census of known candidate runaway sources is 10 -- one of the largest samples ever found in any Milky Way open star cluster. Surprisingly, none of them has the tangential velocity exceeding 20 km s$^{-1}$. If most of them indeed originated in the ONC, it may compel re-examination of dynamical processes in very young star clusters. It appears that the mass function of the ONC is not significantly affected by the lost runaways.

قيم البحث

اقرأ أيضاً

We present the results of a binary population study in the Orion Nebula Cluster (ONC) using archival Hubble Space Telescope (HST) data obtained with the Advanced Camera for Surveys (ACS) in Johnson V filter (HST Proposal 10246, PI M. Robberto). Young clusters and associations hold clues to the origin and properties of multiple star systems. Binaries with separations $< 100 $ AU are useful as tracers of the initial binary population since they are not as likely to be destroyed through dynamical interactions. Low mass, low stellar density star-forming regions such as Taurus-Auriga, reveal an excess of multiples compared to the Galactic Field. Studying the binary population of higher mass, higher stellar density star-forming regions like the ONC provides useful information concerning the origin of the Galactic Field star population. In this survey, we characterize the previously unexplored (and incomplete) separation parameter space of binaries in the ONC (15 - 160 AU) by fitting a double-PSF model built from empirical PSFs. We identified 14 candidate binaries (11 new detections) and find that 8$_{-2%}^{+4%}$ of our observed sample are in binary systems, complete over mass ratios and separations of 0.6 $< $ q $< $ 1.0 and 30 $< $ a $< $ 160 AU. This is consistent with the Galactic Field M-dwarf population over the same parameter ranges, 6.5% $pm$ 3%. Therefore, high mass star forming regions like the ONC would not require further dynamical evolution for their binary population to resemble the Galactic Field, as some models have hypothesized for young clusters.
We report new spectral types or spectral classification constraints for over 600 stars in the Orion Nebula Cluster (ONC) based on medium resolution R~ 1500-2000 red optical spectra acquired using the Palomar 200 and Kitt Peak 3.5m telescopes. Spectra l types were initially estimated for F, G, and early K stars from atomic line indices while for late K and M stars, constituting the majority of our sample, indices involving TiO and VO bands were used. To ensure proper classification, particularly for reddened, veiled, or nebula-contaminated stars, all spectra were then visually examined for type verification or refinement. We provide an updated spectral type table that supersedes Hillenbrand (1997), increasing the percentage of optically visible ONC stars with spectral type information from 68% to 90%. However, for many objects, repeated observations have failed to yield spectral types primarily due to the challenges of adequate sky subtraction against a bright and spatially variable nebular background. The scatter between our new and our previously determined spectral types is approximately 2 spectral sub-classes. We also compare our grating spectroscopy results with classification based on narrow-band TiO filter photometry from Da Rio et al. (2012, finding similar scatter. While the challenges of working in the ONC may explain much of the spread, we highlight several stars showing significant and unexplained bona fide spectral variations in observations taken several years apart; these and similar cases could be due to a combination of accretion and extinction changes. Finally, nearly 20% of ONC stars exhibit obvious Ca II triplet emission indicative of strong accretion.
Although the Orion Nebula Cluster is one of the most studied clusters in the solar neighborhood, the evolution of the very low-mass members ($M_* < 0.25 , M_odot$) has not been fully addressed due to their faintness. Our goal is to verify if some you ng and very low-mass objects in the Orion Nebula Cluster show evidence of ongoing accretion using broadband VLT/X-Shooter spectra. For each target, we determined the corresponding stellar parameters, veiling, observed Balmer jump, and accretion rates. Additionally, we searched for the existence of circumstellar disks through available on-line photometry. We detected accretion activity in three young stellar objects in the Orion Nebula Cluster, two of them being in the very low-mass range. We also detected the presence of young transition disks with ages between 1 and 3.5 Myr.
We present a deep centimeter-wavelength catalog of the Orion Nebula Cluster (ONC), based on a 30h single-pointing observation with the Karl G. Jansky Very Large Array in its high-resolution A-configuration using two 1 GHz bands centered at 4.7 GHz an d 7.3 GHz. A total of 556 compact sources were detected in a map with a nominal rms noise of 3 muJy/bm, limited by complex source structure and the primary beam response. Compared to previous catalogs, our detections increase the sample of known compact radio sources in the ONC by more than a factor of seven. The new data show complex emission on a wide range of spatial scales. Following a preliminary correction for the wideband primary-beam response, we determine radio spectral indices for 170 sources whose index uncertainties are less than +/-0.5. We compare the radio to the X-ray and near-infrared point-source populations, noting similarities and differences.
Angular momentum loss requires magnetic interaction between the forming star and both the circumstellar disk and the magnetically driven outflows. In order to test these predictions many authors have investigated a rotation-disk connection in pre-mai n sequence objects with masses larger than about 0.4Msun. For brown dwarfs this connection was not investigated as yet because there are very few samples available. We aim to extend this investigation well down into the substellar regime for our large sample of BDs in the Orion Nebula Cluster, for which we have recently measured rotational periods. In order to investigate a rotation-disk correlation, we derived near-infrared (NIR) excesses for a sample of 732 periodic variables in the Orion Nebula Cluster with masses ranging between 1.5-0.02 Msun and whose IJHK colors are available. Circumstellar NIR excesses were derived from the Delta[I-K] index. We performed our analysis in three mass bins.We found a rotation-disk correlation in the high and intermediate mass regime, in which objects with NIR excess tend to rotate slower than objects without NIR excess. Interestingly, we found no correlation in the substellar regime. A tight correlation between the peak-to-peak (ptp) amplitude of the rotational modulation and the NIR excess was found however for all objects with available ptp values. We discuss possible scenarios which may explain the lack of rotation-disk connection in the substellar mass regime. One possible reason could be the strong dependence of the mass accretion rate on stellar mass in the investigated mass range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا