ﻻ يوجد ملخص باللغة العربية
Submodular maximization problems belong to the family of combinatorial optimization problems and enjoy wide applications. In this paper, we focus on the problem of maximizing a monotone submodular function subject to a $d$-knapsack constraint, for which we propose a streaming algorithm that achieves a $left(frac{1}{1+2d}-epsilonright)$-approximation of the optimal value, while it only needs one single pass through the dataset without storing all the data in the memory. In our experiments, we extensively evaluate the effectiveness of our proposed algorithm via two applications: news recommendation and scientific literature recommendation. It is observed that the proposed streaming algorithm achieves both execution speedup and memory saving by several orders of magnitude, compared with existing approaches.
The growing need to deal with massive instances motivates the design of algorithms balancing the quality of the solution with applicability. For the latter, an important measure is the emph{adaptive complexity}, capturing the number of sequential rou
We consider the problem of maximizing a monotone submodular function subject to a knapsack constraint. Our main contribution is an algorithm that achieves a nearly-optimal, $1 - 1/e - epsilon$ approximation, using $(1/epsilon)^{O(1/epsilon^4)} n log^
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / varepsilon^2)$ memory, where
Constrained submodular maximization problems encompass a wide variety of applications, including personalized recommendation, team formation, and revenue maximization via viral marketing. The massive instances occurring in modern day applications can
We consider fast algorithms for monotone submodular maximization subject to a matroid constraint. We assume that the matroid is given as input in an explicit form, and the goal is to obtain the best possible running times for important matroids. We d