ترغب بنشر مسار تعليمي؟ اضغط هنا

Similarity solutions for a class of Fractional Reaction-Diffusion equation

102   0   0.0 ( 0 )
 نشر من قبل Choon-Lin Ho
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C.-L. Ho




اسأل ChatGPT حول البحث

This work studies exact solvability of a class of fractional reaction-diffusion equation with the Riemann-Liouville fractional derivatives on the half-line in terms of the similarity solutions. We derived the conditions for the equation to possess scaling symmetry even with the fractional derivatives. Relations among the scaling exponents are determined, and the appropriate similarity variable introduced. With the similarity variable we reduced the stochastic partial differential equation to a fractional ordinary differential equation. Exactly solvable systems are then identified by matching the resulted ordinary differential equation with the known exactly solvable fractional ones. Several examples involving the three-parameter Mittag-Leffler function (Kilbas-Saigo function) are presented. The models discussed here turn out to correspond to superdiffusive systems.



قيم البحث

اقرأ أيضاً

108 - C.-L. Ho , C.-M. Yang 2018
We consider similarity solutions of the generalized convection-diffusion-reaction equation with both space- and time-dependent convection, diffusion and reaction terms. By introducing the similarity variable, the reaction-diffusion equation is reduce d to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable convection-diffusion-reaction systems. Some representative examples of exactly solvable systems are presented. We also describe how an equivalent convection-diffusion-reaction system can be constructed which admits the same similarity solution of another convection-diffusion-reaction system.
The stochastic solution with Gaussian stationary increments is establihsed for the symmetric space-time fractional diffusion equation when $0 < beta < alpha le 2$, where $0 < beta le 1$ and $0 < alpha le 2$ are the fractional derivation orders in tim e and space, respectively. This solution is provided by imposing the identity between two probability density functions resulting (i) from a new integral representation formula of the fundamental solution of the symmetric space-time fractional diffusion equation and (ii) from the product of two independent random variables. This is an alternative method with respect to previous approaches such as the scaling limit of the continuos time random walk, the parametric subordination and the subordinated Langevin equation. A new integral representation formula for the fundamental solution of the space-time fractional diffusion equation is firstly derived. It is then shown that, in the symmetric case, a stochastic solution can be obtained by a Gaussian process with stationary increments and with a random wideness scale variable distributed according to an arrangement of two extremal Levy stable densities. This stochastic solution is self-similar with stationary increments and uniquely defined in a statistical sense by the mean and the covariance structure. Numerical simulations are carried out by choosing as Gaussian process the fractional Brownian motion. Sample paths and probability densities functions are shown to be in agreement with the fundamental solution of the symmetric space-time fractional diffusion equation.
Levy walks define a fundamental concept in random walk theory which allows one to model diffusive spreading that is faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion e quation for an n-dimensional correlated Levy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short range auto-correlated Levy walks in the large time limit, and solve it. Our derivation discloses different dynamical mechanisms leading to correlated Levy walk diffusion in terms of quantities that can be measured experimentally.
This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized fra ctional time-derivative defined by Hilfer (2000), the space derivative of second order by the Riesz-Feller fractional derivative and adding the function phi(x,t) which is a nonlinear function overning reaction. The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of the H-function. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al. (2001, 2005) and a result very recently given by Tomovski et al. (2011). Computational representation of the fundamental solution is also obtained explicitly. Fractional order moments of the distribution are deduced. At the end, mild extensions of the derived results associated with a finite number of Riesz-Feller space fractional derivatives are also discussed.
101 - C.-L. Ho , C.-C. Lee 2015
We consider solvability of the generalized reaction-diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction-diffusion equation is redu ced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction-diffusion systems. Several representative examples of exactly solvable reaction-diffusion equations are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا