ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological strength of magnetic skyrmions

76   0   0.0 ( 0 )
 نشر من قبل Dionisio Bazeia
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We deal with magnetic structures that attain integer and half-integer skyrmion numbers. We model and solve the problem analytically, and show how the solutions appear in materials that engender distinct, very specific physical properties, and use them to describe their topological features. In particular, we found a way to model skyrmion with a large transition region correlated with the presence of a two-peak skyrmion number density. Moreover, we run into the issue concerning the topological strength of a vortex-like structure and suggest an experimental realization, important to decide how to modify and measure the topological strength of the magnetic structure.

قيم البحث

اقرأ أيضاً

Magnetic chiral skyrmions are vortex like spin structures that appear as stable or meta-stable states in magnetic materials due to the interplay between the symmetric and antisymmetric exchange interactions, applied magnetic field and/or uniaxial ani sotropy. Their small size and internal stability make them prospective objects for data storage but for this, the controlled switching between skyrmion states of opposite polarity and topological charge is essential. Here we present a study of magnetic skyrmion switching by an applied magnetic field pulse based on a discrete model of classical spins and atomistic spin dynamics. We found a finite range of coupling parameters corresponding to the coexistence of two degenerate isolated skyrmions characterized by mutually inverted spin structures with opposite polarity and topological charge. We demonstrate how for a wide range of material parameters a short inclined magnetic field pulse can initiate the reliable switching between these states at GHz rates. Detailed analysis of the switching mechanism revealed the complex path of the system accompanied with the excitation of a chiral-achiral meron pair and the formation of an achiral skyrmion.
It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to a significant interfacial Dzyaloshinskii-Moriya Interaction (DMI) that modifies the internal structure of magnetic domain walls (DWs) to favor N{e}el over Bloch type configurations. However, the impact of such a transition on the structure and stability of internal DW defects (e.g., vertical Bloch lines) has not yet been explored. We present a combination of analytical and micromagnetic calculations to describe a new type of topological excitation called a DW Skyrmion characterized by a $360^circ$ rotation of the internal magnetization in a Dzyaloshinskii DW. We further propose a method to identify DW Skyrmions experimentally using Fresnel mode Lorentz TEM; simulated images of DW Skyrmions using this technique are presented based on the micromagnetic results.
82 - Sai Li , Wang Kang , Xichao Zhang 2020
Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendo us attention has been focused on the continuous scaling of Moores Law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been raised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers.
Magnetic skyrmions are hailed as a potential technology for data storage and other data processing devices. However, their stability against thermal fluctuations is an open question that must be answered before skyrmion-based devices can be designed. In this work, we study paths in the energy landscape via which the transition between the skyrmion and the uniform state can occur in interfacial Dzyaloshinskii-Moriya finite-sized systems. We find three mechanisms the system can take in the process of skyrmion nucleation or destruction and identify that the transition facilitated by the boundary has a significantly lower energy barrier than the other energy paths. This clearly demonstrates the lack of the skyrmion topological protection in finite-sized magnetic systems. Overall, the energy barriers of the system under investigation are too small for storage applications at room temperature, but research into device materials, geometry and design may be able to address this.
119 - Sayantika Bhowal , S. Satpathy , 2020
Skyrmions were originally introduced in Particle Physics as a possible mechanism to explain the stability of particles. Lately the concept has been applied in Condensed Matter Physics to describe the newly discovered topologically protected magnetic configurations called the magnetic Skyrmions. This elementary review introduces the concept at a level suitable for beginning students of Physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا