ﻻ يوجد ملخص باللغة العربية
Argon-37 is an environmental signature of an underground nuclear explosion. Producing and quantifying low-level Ar-37 standards is an important step in the development of sensitive field measurement instruments. This paper describes progress at Pacific Northwest National Laboratory in developing a process to generate and quantify low-level Ar-37 standards, which can be used to calibrate sensitive field systems at activities consistent with soil background levels. This paper presents a discussion of the measurement analysis, along with assumptions and uncertainty estimates.
The energy deposition spectra of $^{37}$Ar and $^{71}$Ge in a miniature proportional counter are measured and compared in detail to the model response simulated with Geant4. A certain modification of the Geant4 code, making it possible to trace the d
We have experimentally determined the production rate of $^{39}$Ar and $^{37}$Ar from cosmic ray neutron interactions in argon at sea level. Understanding these production rates is important for argon-based dark matter experiments that plan to utiliz
An active device for radon detection in the air was developed. The monitor operates in pulse counting mode for real-time continuous measurements. The presented prototype has a relatively simple design made of low-price and easy to acquire components
We developed a low-mass and high-efficiency charged particle detector for an experimental study of the rare decay $K_L rightarrow pi^0 u bar{ u}$. The detector is important to suppress the background with charged particles to the level below the sig
We present our latest ASIC, which is used for the readout of Cadmium Telluride double-sided strip detectors (CdTe DSDs) and high spectroscopic imaging. It is implemented in a 0.35 um CMOS technology (X-Fab XH035), consists of 64 readout channels, and