ترغب بنشر مسار تعليمي؟ اضغط هنا

High Energy Neutrinos from the Gravitational Wave event GW150914 possibly associated with a short Gamma-Ray Burst

80   0   0.0 ( 0 )
 نشر من قبل Soebur Razzaque
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-energy neutrino (HEN) and gravitational wave (GW) can probe astrophysical sources in addition to electromagnetic observations. Multimessenger studies can reveal nature of the sources which may not be discerned from one type of signal alone. We discuss HEN emission in connection with the Advanced Laser Interferometer Gravitational-wave Observatory (ALIGO) event GW150914 which could be associated with a short gamma-ray burst (GRB) detected by the $Fermi$ Gamma-ray Burst Monitor (GBM) 0.4 s after the GW event and within localization uncertainty of the GW event. We calculate HEN flux from this short GRB, GW150914-GBM, and show that non-detection of a high-energy starting event (HESE) by the IceCube Neutrino Observatory can constrain the total isotropic-equivalent jet energy of this short burst to be less than $3times 10^{52}$ erg.

قيم البحث

اقرأ أيضاً

Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboratio n. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO trigger. Our upper limits on the hard X-ray fluence at the time of the event range from $F_{gamma}=2 times 10^{-8}$ erg cm$^{-2}$ to $F_{gamma}=10^{-6}$ erg cm$^{-2}$ in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy E$_gamma/$E$_mathrm{GW}<10^{-6}$. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission.
Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy n eutrino prompt emission from pion and kaon decays, assuming that the leading mechanism for the neutrino production is lepto-hadronic. To this purpose, we include hadronic, radiative and adiabatic cooling effects and discuss their relevance for long- (including high- and low-luminosity) and short-duration GRBs. The expected diffuse neutrino background is derived, by requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions of the long and short GRBs. Although dedicated stacking searches have been unsuccessful up to now, we find that GRBs could contribute up to a few % to the observed IceCube high-energy neutrino flux for sub-PeV energies, assuming that the latter has a diffuse origin. Gamma-ray bursts, especially low-luminosity ones, could however be the main sources of the IceCube high-energy neutrino flux in the PeV range. While high-luminosity and low-luminosity GRBs have comparable intensities, the contribution from the short-duration component is significantly smaller. Our findings confirm the most-recent IceCube results on the GRB searches and suggest that larger exposure is mandatory to detect high-energy neutrinos from high-luminosity GRBs in the near future.
175 - Jie Zhu , Bo-Qiang Ma 2021
Previous researches on high-energy neutrino events from gamma-ray bursters (GRBs) suggest a neutrino speed variation $v(E)=c(1pm E/E^{ u}_{mathrm{LV}})$ with ${E}^{ u}_{rm LV}=(6.4pm 1.5)times10^{17}~{ rm GeV}$, together with an intrinsic time differ ence ${Delta {t}_{rm in}=(-2.8pm 0.7)times10^2~{rm s}}$, which means that high-energy neutrinos come out about 300~s earlier than low-energy photons in the source reference system. Considering the possibility that pre-bursts of neutrinos may be accompanied by high-energy photons, in this work we search for high-energy photon events with earlier emission time from 100 to 1000~s before low-energy photons at source by analyzing Fermi Gamma-ray Space Telescope (FGST) data. We perform the searching of photon events with energies larger than 100~MeV, and find 14 events from 48 GRBs with known redshifts. Combining these events with a $1.07~rm{TeV}$ photon event observed by the Major Atmospheric Gamma Imaging Cherenkov telescopes (MAGIC), we suggest a pre-burst stage with a long duration period of several minutes of high energy neutrino emissions accompanied by high energy photons at the GRB source.
We report the discovery of the nearby long, soft GRB 100316D, and the subsequent unveiling of its host galaxy and associated supernova. We study the extremely unusual prompt emission with time-resolved gamma-ray to X-ray spectroscopy and find that a thermal component in addition to the synchrotron spectrum is required. The host galaxy is a bright, blue galaxy with a highly disturbed morphology. From optical photometry and spectroscopy we provide an accurate astrometry and redshift, and derive the key host properties of star formation rate and stellar age. We compare our findings for this GRB-SN with the well known previous case of GRB 060218. GRB 100316D is an important addition to the current sparse sample of spectroscopically confirmed GRB-SNe, from which a better understanding of long GRB progenitors and the GRB-SN connection can be gleaned.
We present the results of a low-energy neutrino search using the Borexino detector in coincidence with the gravitational wave (GW) events GW150914, GW151226 and GW170104. We searched for correlated neutrino events with energies greater than 250 keV w ithin a time window of $pm500$ s centered around the GW detection time. A total of five candidates were found for all three GW150914, GW151226 and GW170104. This is consistent with the number of expected solar neutrino and background events. As a result, we have obtained the best current upper limits on the GW event neutrino fluence of all flavors ($ u_e, u_{mu}, u_{tau}$) in the energy range $(0.5 - 5.0)$ MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا