ﻻ يوجد ملخص باللغة العربية
Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO trigger. Our upper limits on the hard X-ray fluence at the time of the event range from $F_{gamma}=2 times 10^{-8}$ erg cm$^{-2}$ to $F_{gamma}=10^{-6}$ erg cm$^{-2}$ in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy E$_gamma/$E$_mathrm{GW}<10^{-6}$. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission.
High-energy neutrino (HEN) and gravitational wave (GW) can probe astrophysical sources in addition to electromagnetic observations. Multimessenger studies can reveal nature of the sources which may not be discerned from one type of signal alone. We d
The Fermi Gamma-ray Burst Monitor reported the possible detection of the gamma-ray counterpart of a binary black hole merger event, GW150914. We show that the gamma-ray emission is caused by a relativistic outflow with Lorentz factor larger than 10.
We searched for X-ray candidates of the gravitational wave (GW) event GW150914 with Monitor of All-sky X-ray Image (MAXI). MAXI observed the error region of the GW event GW150914 from 4 minutes after the event and covered about 90% of the error regio
The era of gravitational-wave astronomy began on 14 September 2015, when the LIGO Scientific Collaboration detected the merger of two $sim 30 M_odot$ black holes at a distance of $sim 400$ Mpc. This event has facilitated qualitatively new tests of gr
Recent theoretical models suggest that young supernovae might be able to accelerate particles, which in turn might generate very high energy gamma-ray emission. We search for gamma-ray emission towards supernovae in nearby galaxies which were serendi