ﻻ يوجد ملخص باللغة العربية
We study the collective dynamics of repulsive self-propelled particles. The particles are governed by coupled equations of motion that include polar self-propulsion, damping of velocity and of polarity, repulsive particle-particle interaction, and deterministic dynamics. Particle dynamics simulations show that the collective coherent motion with large density fluctuations spontaneously emerges from a disordered, isotropic state. In the parameter region where the rotational damping of polarity is strong, the systems undergoes an abrupt shift to the absorbing ordered state after a waiting period in the metastable disordered state. In order to obtain a simple understanding of the mechanism underlying the collective behavior, we analyze binary particle scattering process. We show that this approach correctly predicts the order-disorder transition at dilute limit. The same approach is expanded for finite densities, although it disagrees with the result from many-particle simulations due to many-body correlations and density fluctuations.
We study the behaviour of interacting self-propelled particles, whose self-propulsion speed decreases with their local density. By combining direct simulations of the microscopic model with an analysis of the hydrodynamic equations obtained by explic
Run-and-tumble dynamics is a wide-spread mechanism of swimming bacteria. The accumulation of run-and-tumble microswimmers near impermeable surfaces is studied theoretically and numerically in the low-density limit in two and three spatial dimensions.
We revisit motility-induced phase separation in two models of active particles interacting by pairwise repulsion. We show that the resulting dense phase contains gas bubbles distributed algebraically up to a typically large cutoff scale. At large eno
We study the large deviations of the distribution P(W_tau) of the work associated with the propulsion of individual active brownian particles in a time interval tau, in the region of the phase diagram where macroscopic phase separation takes place. P
Active diffusiophoresis - swimming through interaction with a self-generated, neutral, solute gradient - is a paradigm for autonomous motion at the micrometer scale. We study this propulsion mechanism within a linear response theory. Firstly, we cons