ﻻ يوجد ملخص باللغة العربية
Run-and-tumble dynamics is a wide-spread mechanism of swimming bacteria. The accumulation of run-and-tumble microswimmers near impermeable surfaces is studied theoretically and numerically in the low-density limit in two and three spatial dimensions. Both uni-modal and exponential distributions of the run lengths are considered. Constant run lengths lead to {peaks and depletions regions} in the density distribution of particles near the surface, in contrast to {exponentially-distributed run lengths}. Finally, we present a universal accumulation law for large channel widths, which applies not only to run-and-tumble swimmers, but also to many other kinds of self-propelled particles.
Active diffusiophoresis - swimming through interaction with a self-generated, neutral, solute gradient - is a paradigm for autonomous motion at the micrometer scale. We study this propulsion mechanism within a linear response theory. Firstly, we cons
We study the behaviour of interacting self-propelled particles, whose self-propulsion speed decreases with their local density. By combining direct simulations of the microscopic model with an analysis of the hydrodynamic equations obtained by explic
Active Brownian particles (ABPs) and Run-and-Tumble particles (RTPs) both self-propel at fixed speed $v$ along a body-axis ${bf u}$ that reorients either through slow angular diffusion (ABPs) or sudden complete randomisation (RTPs). We compare the ph
We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely p
We study two interacting identical run and tumble particles (RTPs) in one dimension. Each particle is driven by a telegraphic noise, and in some cases, also subjected to a thermal white noise with a corresponding diffusion constant $D$. We are intere