ﻻ يوجد ملخص باللغة العربية
We use particle-in-magnetohydrodynamics-cells to model particle acceleration and magnetic field amplification in a high Mach, parallel shock in three dimensions and compare the result to 2-D models. This allows us to determine whether 2-D simulations can be relied upon to yield accurate results in terms of particle acceleration, magnetic field amplification and the growth rate of instabilities. Our simulations show that the behaviour of the gas and the evolution of the instabilities are qualitatively similar for both the 2-D and 3-D models, with only minor quantitative differences that relate primarily to the growth speed of the instabilities. The main difference between 2-D and 3-D models can be found in the spectral energy distributions (SEDs) of the non-thermal particles. The 2-D simulations prove to be more efficient, accelerating a larger fraction of the particles and achieving higher velocities. We conclude that, while 2-D models are sufficient to investigate the instabilities in the gas, their results have to be treated with some caution when predicting the expected SED of a given shock.
We present simulations of magnetized astrophysical shocks taking into account the interplay between the thermal plasma of the shock and supra-thermal particles. Such interaction is depicted by combining a grid-based magneto-hydrodynamics description
The Fermi LAT discovery that classical novae produce >100 MeV gamma-rays establishes that shocks and relativistic particle acceleration are key features of these events. These shocks are likely to be radiative due to the high densities of the nova ej
Magnetic reconnection is invoked as one of the primary mechanisms to produce energetic particles. We employ large-scale three-dimensional (3D) particle-in-cell simulations of reconnection in magnetically-dominated ($sigma=10$) pair plasmas to study t
We study diffusive shock acceleration (DSA) of electrons in non-relativistic quasi-perpendicular shocks using self-consistent one-dimensional particle-in-cell (PIC) simulations. By exploring the parameter space of sonic and Alfv{e}nic Mach numbers we
Magnetic reconnection, especially in the relativistic regime, provides an efficient mechanism for accelerating relativistic particles and thus offers an attractive physical explanation for nonthermal high-energy emission from various astrophysical so