ﻻ يوجد ملخص باللغة العربية
Compared to the quantum noise in the measurement of the translational motion of a suspended mirror using laser light, the quantum noise in the measurement of the angular motion of a suspended mirror has not been investigated intensively despite its potential importance. In this article, an expression for the quantum noise in the angular motion measurement is explicitly derived. The expression indicates that one quadrature of the vacuum field of the first-order Hermite-Gaussian mode of light causes quantum sensing noise and the other causes quantum backaction noise, or in other words the first-order vacuum field is ponderomotively squeezed. It is also shown that the Gouy phase shift the light acquires between the mirror and the position of detection of the light corresponds to the homodyne angle. Therefore, the quantum backaction noise can be cancelled and the standard quantum limit can be surpassed by choosing the appropriate position of detection analogously to the cancellation of quantum radiation pressure noise by choosing an appropriate homodyne angle.
We study the sensitivity and resolution of phase measurement in a Mach-Zehnder interferometer with two-mode squeezed vacuum (<n> photons on average). We show that super-resolution and sub-Heisenberg sensitivity is obtained with parity detection. In p
The interference between coherent and squeezed vacuum light can produce path entangled states with very high fidelities. We show that the phase sensitivity of the above interferometric scheme with parity detection saturates the quantum Cramer-Rao bou
We present a design for a new microresonator whose geometry is optimized to maximize sub-Standard Quantum Limit (SQL) performance. The new design is predicted to have thermal noise well below the SQL across a broad range of frequencies when operated
We report on an orbital-angular-momentum-enhanced scheme for angular displacement estimation based on two-mode squeezed vacuum and parity detection. The sub-Heisenberg-limited sensitivity for angular displacement estimation is obtained in an ideal si
Waveguide mirrors possess nano-structured surfaces which can potentially provide a significant reduction in thermal noise over conventional dielectric mirrors. To avoid introducing additional phase noise from motion of the mirror transverse to the re