ترغب بنشر مسار تعليمي؟ اضغط هنا

Design of Microresonators to Minimize Thermal Noise Below the Standard Quantum Limit

87   0   0.0 ( 0 )
 نشر من قبل Safura Sharifi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a design for a new microresonator whose geometry is optimized to maximize sub-Standard Quantum Limit (SQL) performance. The new design is predicted to have thermal noise well below the SQL across a broad range of frequencies when operated at 10K. The performance of this designed microresonator will allow it to serve as a test-bed for quantum non-demolition measurements, and to open new regimes of precision measurement that are relevant for many practical sensing applications, including advanced gravitational wave detectors.



قيم البحث

اقرأ أيضاً

Here we report on the realization of a Michelson-Sagnac interferometer whose purpose is the precise characterization of the motion of membranes showing significant light transmission. Our interferometer has a readout noise spectral density (imprecisi on) of 3E-16 m/sqrt(Hz) at frequencies around the fundamental resonance of a SiN_x membrane at about 100 kHz, without using optical cavities. The readout noise demonstrated is more than 16 dB below the peak value of the membranes standard quantum limit (SQL). This reduction is significantly higher than those of previous works with nano-wires [Teufel et al., Nature Nano. 4, 820 (2009); Anetsberger et al., Nature Phys. 5, 909 (2009)]. We discuss the meaning of the SQL for force measurements and its relation to the readout performance and conclude that neither our nor previous experiments achieved a total noise spectral density as low as the SQL.
We investigate the prospect of enhancing the phase sensitivity of atom interferometers in the Mach-Zehnder configuration with squeezed light. Ultimately, this enhancement is achieved by transferring the quantum state of squeezed light to one or more of the atomic input beams, thereby allowing operation below the standard quantum limit. We analyze in detail three specific schemes that utilize (1) single-mode squeezed optical vacuum (i.e. low frequency squeezing), (2) two-mode squeezed optical vacuum (i.e. high frequency squeezing) transferred to both atomic inputs, and (3) two-mode squeezed optical vacuum transferred to a single atomic input. Crucially, our analysis considers incomplete quantum state transfer (QST) between the optical and atomic modes, and the effects of depleting the initially-prepared atomic source. Unsurprisingly, incomplete QST degrades the sensitivity in all three schemes. We show that by measuring the transmitted photons and using information recycling [Phys. Rev. Lett. 110, 053002 (2013)], the degrading effects of incomplete QST on the sensitivity can be substantially reduced. In particular, information recycling allows scheme (2) to operate at the Heisenberg limit irrespective of the QST efficiency, even when depletion is significant. Although we concentrate on Bose-condensed atomic systems, our scheme is equally applicable to ultracold thermal vapors.
We demonstrate a transducer of nanomechanical motion based on cavity enhanced optical near-fields capable of achieving a shot-noise limited imprecision more than 10 dB below the standard quantum limit (SQL). Residual background due to fundamental the rmodynamical frequency fluctuations allows a total imprecision 3 dB below the SQL at room temperature (corresponding to 600 am/Hz^(1/2) in absolute units) and is known to reduce to negligible values for moderate cryogenic temperatures. The transducer operates deeply in the quantum backaction dominated regime, prerequisite for exploring quantum backaction, measurement-induced squeezing and accessing sub-SQL sensitivity using backaction evading techniques.
Unconventional receivers enable reduction of error rates in optical communication systems below the standard quantum limit (SQL) by implementing discrimination strategies for constellation symbols that go beyond the canonical measurement of informati on-carrying quantities such as the intensity or quadratures of the electromagnetic field. An example of such a strategy is presented here for average-power constrained binary constellations propagating through a phase noise channel. The receiver, implementing a coherent displacement in the complex amplitude plane followed by photon number resolved detection, can be viewed as an interpolation between direct detection and homodyne detection.
Compared to the quantum noise in the measurement of the translational motion of a suspended mirror using laser light, the quantum noise in the measurement of the angular motion of a suspended mirror has not been investigated intensively despite its p otential importance. In this article, an expression for the quantum noise in the angular motion measurement is explicitly derived. The expression indicates that one quadrature of the vacuum field of the first-order Hermite-Gaussian mode of light causes quantum sensing noise and the other causes quantum backaction noise, or in other words the first-order vacuum field is ponderomotively squeezed. It is also shown that the Gouy phase shift the light acquires between the mirror and the position of detection of the light corresponds to the homodyne angle. Therefore, the quantum backaction noise can be cancelled and the standard quantum limit can be surpassed by choosing the appropriate position of detection analogously to the cancellation of quantum radiation pressure noise by choosing an appropriate homodyne angle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا