ترغب بنشر مسار تعليمي؟ اضغط هنا

Beamforming Errors in Murchison Widefield Array Phased Array Antennas and their effects on Epoch of Reionization Science

189   0   0.0 ( 0 )
 نشر من قبل Abraham Neben
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21cm spectral line emission from the Dark Ages and the Epoch of Reionization and unlock the scientific potential of 21cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of order +/- 10-20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100m baseline and find that using an otherwise perfect foreground model, unmodeled beamforming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the wedge). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beamforming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the EOR window), showing that foreground avoidance remains a viable strategy.



قيم البحث

اقرأ أيضاً

Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the Southern Hemisphere designed specifically to explore the low-frequency astronomica l sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21 cm emission from the epoch of reionisation in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.
Measurements of 21 cm Epoch of Reionization (EoR) structure are subject to systematics originating from both the analysis and the observation conditions. Using 2013 data from the Murchison Widefield Array (MWA), we show the importance of mitigating b oth sources of contamination. A direct comparison between results from Beardsley et al. 2016 and our updated analysis demonstrates new precision techniques, lowering analysis systematics by a factor of 2.8 in power. We then further lower systematics by excising observations contaminated by ultra-faint RFI, reducing by an additional factor of 3.8 in power for the zenith pointing. With this enhanced analysis precision and newly developed RFI mitigation, we calculate a noise-dominated upper limit on the EoR structure of $Delta^2 leq 3.9 times 10^3$ mK$^2$ at $k=0.20$ $textit{h}$ Mpc$^{-1}$ and $z=7$ using 21 hr of data, improving previous MWA limits by almost an order of magnitude.
The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science pro jects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.
It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.
Structure imprinted in foreground extragalactic point sources by ionospheric refraction has the potential to contaminate Epoch of Reionisation (EoR) power spectra of the 21~cm emission line of neutral hydrogen. The alteration of the spatial and spect ral structure of foreground measurements due to total electron content (TEC) gradients in the ionosphere create a departure from the expected sky signal. We present a general framework for understanding the signatures of ionospheric behaviour in the two-dimensional (2D) neutral hydrogen power spectrum measured by a low-frequency radio interferometer. Two primary classes of ionospheric behaviour are considered, corresponding to dominant modes observed in Murchison Widefield Array (MWA) EoR data; namely, anisotropic structured wave behaviour, and isotropic turbulence. Analytic predictions for power spectrum bias due to this contamination are computed, and compared with simulations. We then apply the ionospheric metric described in Jordan et al. (2017) to study the impact of ionospheric structure on MWA data, by dividing MWA EoR datasets into classes with good and poor ionospheric conditions, using sets of matched 30-minute observations from 2014 September. The results are compared with the analytic and simulated predictions, demonstrating the observed bias in the power spectrum when the ionosphere is active (displays coherent structures or isotropic turbulence). The analysis demonstrates that unless ionospheric activity can be quantified and corrected, active data should not be included in EoR analysis in order to avoid systematic biases in cosmological power spectra. When data are corrected with a model formed from the calibration information, bias reduces below the expected 21~cm signal level. Data are considered `quiet when the median measured source position offsets are less than 10-15~arcseconds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا