ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessment of ionospheric activity tolerances for Epoch of Reionisation science with the Murchison Widefield Array

287   0   0.0 ( 0 )
 نشر من قبل Cathryn Trott
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Structure imprinted in foreground extragalactic point sources by ionospheric refraction has the potential to contaminate Epoch of Reionisation (EoR) power spectra of the 21~cm emission line of neutral hydrogen. The alteration of the spatial and spectral structure of foreground measurements due to total electron content (TEC) gradients in the ionosphere create a departure from the expected sky signal. We present a general framework for understanding the signatures of ionospheric behaviour in the two-dimensional (2D) neutral hydrogen power spectrum measured by a low-frequency radio interferometer. Two primary classes of ionospheric behaviour are considered, corresponding to dominant modes observed in Murchison Widefield Array (MWA) EoR data; namely, anisotropic structured wave behaviour, and isotropic turbulence. Analytic predictions for power spectrum bias due to this contamination are computed, and compared with simulations. We then apply the ionospheric metric described in Jordan et al. (2017) to study the impact of ionospheric structure on MWA data, by dividing MWA EoR datasets into classes with good and poor ionospheric conditions, using sets of matched 30-minute observations from 2014 September. The results are compared with the analytic and simulated predictions, demonstrating the observed bias in the power spectrum when the ionosphere is active (displays coherent structures or isotropic turbulence). The analysis demonstrates that unless ionospheric activity can be quantified and corrected, active data should not be included in EoR analysis in order to avoid systematic biases in cosmological power spectra. When data are corrected with a model formed from the calibration information, bias reduces below the expected 21~cm signal level. Data are considered `quiet when the median measured source position offsets are less than 10-15~arcseconds.

قيم البحث

اقرأ أيضاً

Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the Southern Hemisphere designed specifically to explore the low-frequency astronomica l sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21 cm emission from the epoch of reionisation in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.
Low-frequency, wide field-of-view (FoV) radio telescopes such as the Murchison Widefield Array (MWA) enable the ionosphere to be sampled at high spatial completeness. We present the results of the first power spectrum analysis of ionospheric fluctuat ions in MWA data, where we examined the position offsets of radio sources appearing in two datasets. The refractive shifts in the positions of celestial sources are proportional to spatial gradients in the electron column density transverse to the line of sight. These can be used to probe plasma structures and waves in the ionosphere. The regional (10-100 km) scales probed by the MWA, determined by the size of its FoV and the spatial density of radio sources (typically thousands in a single FoV), complement the global (100-1000 km) scales of GPS studies and local (0.01-1 km) scales of radar scattering measurements. Our data exhibit a range of complex structures and waves. Some fluctuations have the characteristics of travelling ionospheric disturbances (TIDs), while others take the form of narrow, slowly-drifting bands aligned along the Earths magnetic field.
We apply two methods to estimate the 21~cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the multiple redundantly-spaced triangles of antenna tiles, as well as an estimate based on data gridded to the $uv$-plane. The direct and gridded bispectrum estimators are applied to 21 hours of high-band (167--197~MHz; $z$=6.2--7.5) data from the 2016 and 2017 observing seasons. Analytic predictions for the bispectrum bias and variance for point source foregrounds are derived. We compare the output of these approaches, the foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 hours, while equilateral configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that hinders power spectrum estimators, and the 21~cm bispectrum may be accessible in less time than the 21~cm power spectrum for some wave modes, with detections in hundreds of hours.
Refraction and diffraction of incoming radio waves by the ionosphere induce time variability in the angular positions, peak amplitudes and shapes of radio sources, potentially complicating the automated cross-matching and identification of transient and variable radio sources. In this work, we empirically assess the effects of the ionosphere on data taken by the Murchison Widefield Array (MWA) radio telescope. We directly examine 51 hours of data observed over 10 nights under quiet geomagnetic conditions (global storm index Kp < 2), analysing the behaviour of short-timescale angular position and peak flux density variations of around ten thousand unresolved sources. We find that while much of the variation in angular position can be attributed to ionospheric refraction, the characteristic displacements (10-20 arcsec) at 154 MHz are small enough that search radii of 1-2 arcmin should be sufficient for cross-matching under typical conditions. By examining bulk trends in amplitude variability, we place upper limits on the modulation index associated with ionospheric scintillation of 1-3% for the various nights. For sources fainter than ~1 Jy, this variation is below the image noise at typical MWA sensitivities. Our results demonstrate that the ionosphere is not a significant impediment to the goals of time-domain science with the MWA at 154 MHz.
Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21cm spectral line emission from the Dark Ages and the Epoch of Reionization and unlock the scientific potential of 21cm cosmology. Past work has focuse d on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of order +/- 10-20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100m baseline and find that using an otherwise perfect foreground model, unmodeled beamforming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the wedge). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beamforming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the EOR window), showing that foreground avoidance remains a viable strategy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا