ﻻ يوجد ملخص باللغة العربية
Perovksite semiconductors have shown promise for low-cost solar cells, lasers and photodetectors, yet their fundamental photophysical properties are not well understood. Recent observations of a low ($sim$few meV) exciton binding energy and evidence of hot phonon effects in the room temperature phase suggest that perovskites are much closer to inorganic semiconductors than the absorber layers in traditional organic photovoltaics, signaling the need for experiments that shed light on the placement of perovskite materials within the spectrum of semiconductors used in optoelectronics and photovoltaics. Here we use four-wave mixing (FWM) to contrast the coherent optical response of CH$_3$NH$_3$PbI$_3$ thin films and crystalline GaAs. At carrier densities relevant for solar cell operation, our results show that carriers interact surprisingly weakly via the Coulomb interaction in perovskite, much weaker than in inorganic semiconductors. These weak many-body effects lead to a dephasing time in CH$_3$NH$_3$PbI$_3$ $sim$3 times longer than in GaAs. Our results also show that the strong enhancement of the exciton FWM signal tied to excitation-induced dephasing in GaAs and other III-V semiconductors does not occur in perovskite due to weak exciton-carrier scattering interactions.
We report the application of femtosecond four-wave mixing (FWM) to the study of carrier transport in solution-processed CH3NH3PbI3. The diffusion coefficient was extracted through direct detection of the lateral diffusion of carriers utilizing the tr
In this work, we use density functional theory calculations to demonstrate how spontaneous electric polarizations can be induced textit{via} a hybrid improper ferroelectric mechanism in iodide perovskites, a family well-known to display solar-optimal
The optical magnetoelectric effect, which is an inherent attribute of the spin excitations in multiferroics, drastically changes their optical properties compared to conventional materials where light-matter interaction is expressed only by the diele
Many-body interactions in monolayer transition-metal dichalcogenides are strongly affected by their unique band structure. We study these interactions by measuring the energy shift of neutral excitons (bound electron-hole pairs) in gated WSe$_2$ and
Mixed-dimensional magnetic heterostructures are intriguing, newly available platforms to explore quantum physics and its applications. Using state-of-the-art many-body perturbation theory, we predict the energy level alignment for a self-assembled mo