ترغب بنشر مسار تعليمي؟ اضغط هنا

Carrier Diffusion in Thin-Film CH3NH3PbI3 Perovskite Measured using Four-Wave Mixing

259   0   0.0 ( 0 )
 نشر من قبل Kimberley Hall
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the application of femtosecond four-wave mixing (FWM) to the study of carrier transport in solution-processed CH3NH3PbI3. The diffusion coefficient was extracted through direct detection of the lateral diffusion of carriers utilizing the transient grating technique, coupled with simultaneous measurement of decay kinetics exploiting the versatility of the boxcar excitation beam geometry. The observation of exponential decay of the transient grating versus interpulse delay indicates diffusive transport with negligible trapping within the first nanosecond following excitation. The in-plane transport geometry in our experiments enabled the diffusion length to be compared directly with the grain size, indicating that carriers move across multiple grain boundaries prior to recombination. Our experiments illustrate the broad utility of FWM spectroscopy for rapid characterization of macroscopic film transport properties.



قيم البحث

اقرأ أيضاً

122 - Li Yang , Jinjie Liu , Yanwen Lin 2021
Twin boundaries (TBs) were identified to show conflicting positive/negative effects on the physical properties of CH3NH3PbI3 perovskite, but their roles on the mechanical properties are pending. Herein, tensile characteristics of a variety of TB-domi nated bicrystalline CH3NH3PbI3 perovskites are explored using molecular simulations. TB-contained CH3NH3PbI3 are classified into four types from their tensile ductile detwinning characteristics. Type I is characterized by smooth loading flow stressstrain responses, originating from relatively uniform stress distribution induced gradual amorphization at TB region. Types II and III are represented by sudden drop of loading stresses but then distinct ductile flow stress-strain curves, resulting from limited and large-area amorphizations of TB-involved structures, respectively. However, Type IV is highlighted by double apparent peaks in the loading curve followed by ductile flow response, coming from stress-concentration of localization-to-globalization at TB structure, as well as amorphization. This study provides critical insights into mechanics of CH3NH3PbI3 perovskites, and offers that TB engineering is a promising strategy to design mechanically robust hybrid organic-inorganic perovskites-based device systems
We present the first experimental investigation of nonlinear optical properties of graphene flakes. We find that at near infrared frequencies a graphene monolayer exhibits a remarkably high third-order optical nonlinearity which is practically indepe ndent of the wavelengths of incident light. The nonlinear optical response can be utilized for imaging purposes, with image contrasts of graphene which are orders of magnitude higher than those obtained using linear microscopy.
Solar cells incorporating organic-inorganic perovskite, which may be fabricated using low-cost solution-based processing, have witnessed a dramatic rise in efficiencies yet their fundamental photophysical properties are not well understood. The excit on binding energy, central to the charge collection process, has been the subject of considerable controversy due to subtleties in extracting it from conventional linear spectroscopy techniques due to strong broadening tied to disorder. Here we report the simultaneous observation of free and defect-bound excitons in CH3NH3PbI3 films using four-wave mixing (FWM) spectroscopy. Due to the high sensitivity of FWM to excitons, tied to their longer coherence decay times than unbound electron-hole pairs, we show that the exciton resonance energies can be directly observed from the nonlinear optical spectra. Our results indicate low-temperature binding energies of 13 meV (29 meV) for the free (defect-bound) exciton, with the 16 meV localization energy for excitons attributed to binding to point defects. Our findings shed light on the wide range of binding energies (2-55 meV) reported in recent years.
152 - T. Chen , B. J. Foley , B. Ipek 2015
Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynam ics of CH3NH3+ cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3+ cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327K) and tetragonal (165K < T < 327K) phases, the CH3NH3+ ions exhibit four-fold rotational symmetry of the C-N axis (C4) along with three-fold rotation around the C-N axis (C3), while in orthorhombic phase (T < 165K) only C3 rotation is present. Around room temperature, the characteristic relaxation times for the C4 rotation is found to be ps while for the C3 rotation ps. The -dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3+ and the associated dipole have important implications on understanding the low exciton binding energy and slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance.
Perovksite semiconductors have shown promise for low-cost solar cells, lasers and photodetectors, yet their fundamental photophysical properties are not well understood. Recent observations of a low ($sim$few meV) exciton binding energy and evidence of hot phonon effects in the room temperature phase suggest that perovskites are much closer to inorganic semiconductors than the absorber layers in traditional organic photovoltaics, signaling the need for experiments that shed light on the placement of perovskite materials within the spectrum of semiconductors used in optoelectronics and photovoltaics. Here we use four-wave mixing (FWM) to contrast the coherent optical response of CH$_3$NH$_3$PbI$_3$ thin films and crystalline GaAs. At carrier densities relevant for solar cell operation, our results show that carriers interact surprisingly weakly via the Coulomb interaction in perovskite, much weaker than in inorganic semiconductors. These weak many-body effects lead to a dephasing time in CH$_3$NH$_3$PbI$_3$ $sim$3 times longer than in GaAs. Our results also show that the strong enhancement of the exciton FWM signal tied to excitation-induced dephasing in GaAs and other III-V semiconductors does not occur in perovskite due to weak exciton-carrier scattering interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا