ترغب بنشر مسار تعليمي؟ اضغط هنا

Half-Skyrmion Spin Textures In Polariton Microcavities

338   0   0.0 ( 0 )
 نشر من قبل Pasquale Cilibrizzi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the polarization dynamics of a spatially expanding polariton condensate under nonresonant linearly polarized optical excitation. The spatially and temporally resolved polariton emission reveals the formation of non-trivial spin textures in the form of a quadruplet polarization pattern both in the linear and circular Stokes parameters, and an octuplet in the diagonal Stokes parameter. The continuous rotation of the polariton pseudospin vector through the condensate due to TE-TM splitting exhibits an ordered pattern of half-skyrmions associated with a half-integer topological number. A theoretical model based on a driven-dissipative Gross-Pitaevskii equation coupled with an exciton reservoir describes the dynamics of the nontrivial spin textures through the optical spin-Hall effect.



قيم البحث

اقرأ أيضاً

102 - G. Diaz-Camacho , C. Tejedor , 2018
We consider a polariton microcavity resonantly driven by two external lasers which simultaneously pump both lower and upper polariton branches at normal incidence. In this setup, we study the occurrence of instabilities of the pump-only solutions tow ards the spontaneous formation of patterns. Their appearance is a consequence of the spontaneous symmetry breaking of translational and rotational invariance due to interaction induced parametric scattering. We observe the evolution between diverse patterns which can be classified as single-pump, where parametric scattering occurs at the same energy as one of the pumps, and as two-pump, where scattering occurs at a different energy. For two-pump instabilities, stripe and chequerboard patterns become the dominant steady-state solutions because cubic parametric scattering processes are forbidden. This contrasts with the single-pump case, where hexagonal patterns are the most common arrangements. We study the possibility of controlling the evolution between different patterns. Our results are obtained within a linear stability analysis and are confirmed by finite size full numerical calculations.
In cubic noncentrosymmetric ferromagnets uniaxial distortions suppress the helical states and stabilize Skyrmion lattices in a broad range of thermodynamical parameters. Using a phenomenological theory for modulated and localized states in chiral mag nets, the equilibrium parameters of the Skyrmion and helical states are derived as functions of the applied magnetic field and induced uniaxial anisotropy. These results show that due to a combined effect of induced uniaxial anisotropy and an applied magnetic field Skyrmion lattices can be formed as thermodynamically stable states in large intervals of magnetic field and temperatures in cubic helimagnets, e.g., in intermetallic compounds MnSi, FeGe, (Fe,Co)Si. We argue that this mechanism is responsible for the formation of Skyrmion states recently observed in thin layers of Fe_{0.5}Co_{0.5}Si [X.Z.Yu et al., Nature textbf{465}(2010) 901].
The dynamics of optical switching in semiconductor microcavities in the strong coupling regime is studied using time- and spatially-resolved spectroscopy. The switching is triggered by polarised short pulses which create spin bullets of high polarito n density. The spin packets travel with speeds of the order of 106 m/s due to the ballistic propagation and drift of exciton-polaritons from high to low density areas. The speed is controlled by the angle of incidence of the excitation beams, which changes the polariton group velocity.
94 - P. Zhang , A. Das , E. Barts 2020
Topological spin textures in an itinerant ferromagnet, SrRuO$_3$ is studied combining Hall transport measurements and numerical simulations. We observe characteristic signatures of the Topological Hall Effect associated with skyrmions. A relatively l arge thickness of our films and absence of heavy metal layers make the interfacial Dzyaloshinskii-Moriya interaction an unlikely source of these topological spin textures. Additionally, the transport anomalies exhibit an unprecedented robustness to magnetic field tilting and temperature. Our numerical simulations suggest that this unconventional behavior results from magnetic bubbles with skyrmion topology stabilized by magnetodipolar interactions in an unexpected region of parameter space.
Diamond cavity optomechanical devices hold great promise for quantum technology based on coherent coupling between photons, phonons and spins. These devices benefit from the exceptional physical properties of diamond, including its low mechanical dis sipation and optical absorption. However the nanoscale dimensions and mechanical isolation of these devices can make them susceptible to thermo-optic instability when operating at the high intracavity field strengths needed to realize coherent photon--phonon coupling. In this work, we overcome these effects through engineering of the device geometry, enabling operation with large photon numbers in a previously thermally unstable regime of red-detuning. We demonstrate optomechanically induced transparency with cooperativity > 1 and normal mode cooling from 300 K to 60 K, and predict that these device will enable coherent optomechanical manipulation of diamond spin systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا