ﻻ يوجد ملخص باللغة العربية
Bright features have been recently discovered by Dawn on Ceres, which extend previous photometric and Space Telescope observations. These features should produce distortions of the line profiles of the reflected solar spectrum and therefore an apparent radial velocity variation modulated by the rotation of the dwarf planet. Here we report on two sequences of observations of Ceres performed in the nights of 31 July, 26-27 August 2015 by means of the high-precision HARPS spectrograph at the 3.6-m La Silla ESO telescope. The observations revealed a quite complex behaviour which likely combines a radial velocity modulation due to the rotation with an amplitude of approx +/- 6 m/s and an unexpected diurnal effect. The latter changes imply changes in the albedo of Occators bright features due to the blaze produced by the exposure to solar radiation. The short-term variability of Ceres albedo is on timescales ranging from hours to months and can both be confirmed and followed by means of dedicated radial velocity observations.
Previous observations suggested that Ceres has active but possibly sporadic water outgassing, and possibly varying spectral characteristics in a time scale of months. We used all available data of Ceres collected in the past three decades from the gr
Low-albedo, hydrated objects dominate the list of the largest asteroids. These objects have varied spectral shapes in the 3-$mu$m region, where diagnostic absorptions due to volatile species are found. Dawns visit to Ceres has extended the view shape
The Gaia mission started its regular observing program in the summer of 2014, and since then it is regularly obtaining observations of asteroids. This paper draws the outline of the data processing for Solar System objects, and in particular on the d
Context: The dwarf planet (1) Ceres - next target of the NASA Dawn mission - is the largest body in the asteroid main belt; although several observations of this body have been performed so far, the presence of surface water ice is still questioned.
Radial velocity identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near infrared rad