ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared Spectroscopy of Large, Low-Albedo Asteroids: Are Ceres and Themis Archetypes or Outliers?

157   0   0.0 ( 0 )
 نشر من قبل Andrew Rivkin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-albedo, hydrated objects dominate the list of the largest asteroids. These objects have varied spectral shapes in the 3-$mu$m region, where diagnostic absorptions due to volatile species are found. Dawns visit to Ceres has extended the view shaped by ground-based observing, and shown that world to be a complex one, potentially still experiencing geological activity. We present 33 observations from 2.2-4.0 $mu$m of eight large (greater than 200 km diameter) asteroids from the C spectral complex, with spectra inconsistent with the hydrated minerals we see in meteorites. We characterize their absorption band characteristics via polynomial and Gaussian fits to test their spectral similarity to Ceres, the asteroid 24 Themis (thought to be covered in ice frost), and the asteroid 51 Nemausa (spectrally similar to the CM meteorites). We confirm most of the observations are inconsistent with what is seen in meteorites and require additional absorbers. We find clusters in band centers that correspond to Ceres- and Themis-like spectra, but no hiatus in the distribution suitable for use to simply distinguish between them. We also find a range of band centers in the spectra that approaches what is seen on Comet 67P. Finally, variation is seen between observations for some objects, with the variation on 324 Bamberga consistent with hemispheric-level difference in composition. Given the ubiquity of objects with 3-$mu$m spectra unlike what we see in meteorites, and the similarity of those spectra to the published spectra of Ceres and Themis, these objects appear much more to be archetypes than outliers.



قيم البحث

اقرأ أيضاً

Previous observations suggested that Ceres has active but possibly sporadic water outgassing, and possibly varying spectral characteristics in a time scale of months. We used all available data of Ceres collected in the past three decades from the gr ound and the Hubble Space Telescope, and the newly acquired images by Dawn Framing Camera to search for spectral and albedo variability on Ceres, in both a global scale and local regions, particularly the bright spots inside Occator crater, over time scales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in Occator crater by >15%, or the global albedo by >3% over various time scales that we searched. Recently reported spectral slope variations can be explained by changing Sun-Ceres-Earth geometry. The active area on Ceres is less than 1 km$^2$, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres heliocentric distance, rulling out the possibility of comet-like sublimation process as a possible mechanism driving the activity.
The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 par ameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows $f(x) = x exp[-x^2/(2sigma^2)]/sigma^2$ for positive x. The peak value is at x=sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at $p_V = 0.03$, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at $p_V = 0.168$. A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by surveying to H=22 mag, since a 140 m diameter asteroid at the very dark peak has H=23.7 mag, and more than 10% of NEAs are darker than p_V = 0.03.
Themis is an old and statistically robust asteroid family populating the outer main belt, and resulting from a catastrophic collision that took place 2.5$pm$1.0 Gyr ago. Within the old Themis family a young sub-family, Beagle, formed less than 10 Myr ago, has been identified. We present the results of a spectroscopic survey in the visible and near infrared range of 22 Themis and 8 Beagle families members. The Themis members investigated exhibit a wide range of spectral behaviors, while the younger Beagle family members look spectrally bluer with a smaller spectral slope variability. The best meteorite spectral analogues found for both Themis and Beagle families members are carbonaceous chondrites having experienced different degrees of aqueous alteration, prevalently CM2 but also CV3 and CI, and some of them are chondrite samples being unusual or heated. We extended the spectral analysis including the data available in the literature on Themis and Beagle families members, and we looked for correlations between spectral behavior and physical parameters using the albedo and size values derived from the WISE data. The analysis of this larger sample confirm the spectral diversity within the Themis family and that Beagle members tend to be bluer and to have an higher albedo. The differences between the two family may be partially explained by space weathering processes, which act on these primitive surfaces in a similar way than on S-type asteroids, i.e. producing reddening and darkening. However we see several Themis members having albedos and spectral slopes similar to the young Beagle members. Alternative scenarios are proposed including heterogeneity in the parent body having a compositional gradient with depth, and/or the survival of projectile fragments having a different composition than the parent body.
112 - Haoxuan Jiang , Jianghui Ji 2021
Themis family is one of the largest and oldest asteroid populations in the main-belt. Water-ice may widely exist on the parent body (24) Themis. In this work, we employ the Advanced Thermophysical Model as well as mid-infrared measurements from NASAs Wide-Field Infrared Survey Explorer to explore thermal parameters of 20 Themis family members. Here we show that the average thermal inertia and geometric albedo are ~$39.5pm26.0 ~rm J m^{-2} s^{-1/2} K^{-1}$ and $0.067pm0.018$, respectively. The family members have a relatively moderate roughness fraction on their surfaces. We find that the relatively low albedos of Themis members are consistent with the typical values of B-type and C-type asteroids. As aforementioned, Themis family bears a very low thermal inertia, which indicates a fine and mature regolith on their surfaces. The resemblance of thermal inertia and geometric albedo of Themis members may reveal their close connection in origin and evolution. In addition, we present the compared results of thermal parameters for several prominent families.
We study the distributions of effective diameter ($D$), beaming parameter ($eta$), and visible geometric albedo ($p_V$) of asteroids in cometry orbits (ACOs) populations, derived from NASAs Wide-field Infrared Explorer (WISE) observations, and compar e these with the same, independently determined properties of the comets. The near-Earth asteroid thermal model (NEATM) is used to compute the $D$, $p_V$ and $eta$. We obtained $D$ and $p_V$ for 49 ACOs in Jupiter family cometary orbits (JF-ACOs) and 16 ACOs in Halley-type orbits (Damocloids). We also obtained $eta$ for 45 of them. All but three JF-ACOs (95% of the sample) present a low albedo compatible with a cometary origin. The $p_V$ and $eta$ distributions of both ACO populations are very similar. For the entire sample of ACOs, the mean geometric albedo is $bar{p_V} = 0.05 pm 0.02$, ($bar{p_V} = 0.05 pm 0.01$ and $bar{p_V} =0.05 pm 0.02$ for JF-ACOs and Damocloids, respectively) compatible with a narrow albedo distribution similar to that of the Jupiter family comets (JFCs), with a $bar{p_V} sim 0.04$. The $bar{eta} =1.0 pm 0.2$. We find no correlations between $D$, $p_V$ , or $eta$. We compare the cumulative size distribution (CSD) of ACOs, Centaurs, and JFCs. Although the Centaur sample contains larger objects, the linear parts in their log-log plot of the CSDs presents a similar cumulative exponent ($beta = 1.85 pm 0.30$ and $1.76 pm 0.35$, respectively). The CSD for Damocloids presents a much shallower exponent $beta = 0.89 pm 0.17$. The CSD for JF-ACOs is shallower and shifted towards larger diameters with respect to the CSD of active JFCs, which suggests that the mantling process has a size dependency whereby large comets tend to reach an inactive stage faster than small ones. Finally, the population of JF-ACOs is comparable in number that of JFCs, although there are more tens-km JF-ACOs than JFCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا