ﻻ يوجد ملخص باللغة العربية
The objective of the present paper is to analyse various features of the Smith-Wilson method used for discounting under the EU regulation Solvency II, with special attention to hedging. In particular, we show that all key rate duration hedges of liabilities beyond the Last Liquid Point will be peculiar. Moreover, we show that there is a connection between the occurrence of negative discount factors and singularities in the convergence criterion used to calibrate the model. The main tool used for analysing hedges is a novel stochastic representation of the Smith-Wilson method. Further, we provide necessary conditions needed in order to construct similar, but hedgeable, discount curves.
This paper studies pricing derivatives in an age-dependent semi-Markov modulated market. We consider a financial market where the asset price dynamics follow a regime switching geometric Brownian motion model in which the coefficients depend on finit
This paper presents the solution to a European option pricing problem by considering a regime-switching jump diffusion model of the underlying financial asset price dynamics. The regimes are assumed to be the results of an observed pure jump process,
In the classical model of stock prices which is assumed to be Geometric Brownian motion, the drift and the volatility of the prices are held constant. However, in reality, the volatility does vary. In quantitative finance, the Heston model has been s
This paper presents how to apply the stochastic collocation technique to assets that can not move below a boundary. It shows that the polynomial collocation towards a lognormal distribution does not work well. Then, the potentials issues of the relat
When the underlying stock price is a strict local martingale process under an equivalent local martingale measure, Black-Scholes PDE associated with an European option may have multiple solutions. In this paper, we study an approximation for the smal