ﻻ يوجد ملخص باللغة العربية
Construction C (also known as Forneys multi-level code formula) forms a Euclidean code for the additive white Gaussian noise (AWGN) channel from $L$ binary code components. If the component codes are linear, then the minimum distance is the same for all the points, although the kissing number may vary. In fact, while in the single level ($L=1$) case it reduces to lattice Construction A, a multi-level Construction C is in general not a lattice. We show that the two-level ($L=2$) case is special: a two-level Construction C satisfies Forneys definition for a geometrically uniform constellation. Specifically, every point sees the same configuration of neighbors, up to a reflection of the coordinates in which the lower level code is equal to 1. In contrast, for three levels and up ($Lgeq 3$), we construct examples where the distance spectrum varies between the points, hence the constellation is not geometrically uniform.
Besides all the attention given to lattice constructions, it is common to find some very interesting nonlattice constellations, as Construction C, for example, which also has relevant applications in communication problems (multi-level coding, multi-
Construction $C^star$ was recently introduced as a generalization of the multilevel Construction C (or Forneys code-formula), such that the coded levels may be dependent. Both constructions do not produce a lattice in general, hence the central idea
Let $mathbb{F}_{q}$ be the finite field of $q$ elements and let $D_{2n}=langle x,ymid x^n=1, y^2=1, yxy=x^{n-1}rangle$ be the dihedral group of order $n$. Left ideals of the group algebra $mathbb{F}_{q}[D_{2n}]$ are known as left dihedral codes over
Lattice and special nonlattice multilevel constellations constructed from binary codes, such as Constructions A, C, and D, have relevant applications in Mathematics (sphere packing) and in Communication (multi-stage decoding and efficient vector quan
The well known Plotkin construction is, in the current paper, generalized and used to yield new families of Z2Z4-additive codes, whose length, dimension as well as minimum distance are studied. These new constructions enable us to obtain families of