ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical simulations of oscillating tori in a pseudo-Newtonian potential

316   0   0.0 ( 0 )
 نشر من قبل Varadarajan Parthasarathy Mr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have modeled hydrodynamical tori in the Klu{z}niak-Lee pseudo-Newtonian potential. The tori in equilibrium were perturbed with uniform sub-sonic velocity fields: vertical, radial and diagonal respectively, and allowed to evolve in time. We identify the eigenmodes corresponding to those of slender tori. The results of our simulations are relevant to the investigation of high-frequency quasi-periodic oscillations observed in stellar-mass black hole binaries.

قيم البحث

اقرأ أيضاً

Context. The high-frequency quasi-periodic oscillations (HF QPOs) in neutron star and stellar-mass black hole X-ray binaries may be the result of a resonance between the radial and vertical epicyclic oscillations in strong gravity. Aims. In this pape r we investigate the resonant coupling between the epicyclic modes in a torus in a strong gravitational field. Methods. We perform numerical simulations of axisymmetric constant angular momentum tori in the pseudo-Newtonian potential. The epicyclic motion is excited by adding a constant radial velocity to the torus. Results. We verify that slender tori perform epicyclic motions at the frequencies of free particles, but the epicyclic frequencies decrease as the tori grow thicker. More importantly, and in contrast to previous numerical studies, we do not find a coupling between the radial and vertical epicyclic motions. The appearance of other modes than the radial epicyclic motion in our simulations is rather due to small numerical deviations from exact equilibrium in the initial state of our torus. Conclusions. We find that there is no pressure coupling between the two axisymmetric epicyclic modes as long as the torus is symmetric with respect to the equatorial plane. However we also find that there are other modes in the disc that may be more attractive for explaining the HF QPOs.
We write down and apply the linearized fluid and gravitational equations consistent with pseudo-Newtonian simulations, whereby Newtonian hydrodynamics is used with a pseudo-Newtonian monopole and standard Newtonian gravity for higher multipoles. We t hereby eliminate the need to use mode function matching to identify the active non-radial modes in pseudo-Newtonian core-collapse supernova simulations, in favor of the less complex and less costly mode frequency matching method. In doing so, we are able to measure appropriate boundary conditions for a mode calculation.
Context. Some microquasars exhibit millisecond quasi-periodic oscillations (QPO) that are likely related to phenomena occuring in the immediate vicinity of the central black hole. Oscillations of accretion tori have been proposed to model these QPOs. Aims. Here, we aim at determining the observable spectral signature of slender accretion tori surrounding Kerr black holes. We analyze the impact of the inclination and spin parameters on the power spectra. Methods. Ray-traced power spectra of slender tori oscillation modes are computed in the Kerr metric. Results. We show that the power spectral densities of oscillating tori are very sensitive to the inclination and spin parameters. This strong dependency of the temporal spectra on inclination and spin may lead to observable constraints of these parameters. Conclusions. This work goes a step further in the analysis of the oscillating torus QPO model. It is part of a long-term study that will ultimately lead to comparison with observed data.
The mixed morphology class of supernova remnants has centrally peaked X-ray emission along with a shell-like morphology in radio emission. White & Long proposed that these remnants are evolving in a cloudy medium wherein the clouds are evaporated via thermal conduction once being overrun by the expanding shock. Their analytical model made detailed predictions regarding temperature, density and emission profiles as well as shock evolution. We present numerical hydrodynamical models in 2D and 3D including thermal conduction, testing the White & Long model and presenting results for the evolution and emission from remnants evolving in a cloudy medium. We find that, while certain general results of the White & Long model hold, such as the way the remnants expand and the flattening of the X-ray surface brightness distribution, in detail there are substantial differences. In particular we find that the X-ray luminosity is dominated by emission from shocked cloud gas early on, leading to a bright peak which then declines and flattens as evaporation becomes more important. In addition, the effects of thermal conduction on the intercloud gas, which is not included in the White & Long model, are important and lead to further flattening of the X-ray brightness profile as well as lower X-ray emission temperatures.
The non-Newtonian behavior of a monodisperse concentrated dispersion of spherical particles was investigated using a direct numerical simulation method, that takes into account hydrodynamic interactions and thermal fluctuations accurately. Simulation s were performed under steady shear flow with periodic boundary conditions in the three directions. The apparent shear viscosity of the dispersions was calculated at volume fractions ranging from 0.31 to 0.56. Shear-thinning behavior was clearly observed at high volume fractions. The low- and high-limiting viscosities were then estimated from the apparent viscosity by fitting these data into a semi-empirical formula. Furthermore, the short-time motions were examined for Brownian particles fluctuating in concentrated dispersions, for which the fluid inertia plays an important role. The mean square displacement was monitored in the vorticity direction at several different Peclet numbers and volume fractions so that the particle diffusion coefficient is determined from the long-time behavior of the mean square displacement. Finally, the relationship between the non-Newtonian viscosity of the dispersions and the structural relaxation of the dispersed Brownian particles is examined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا