ﻻ يوجد ملخص باللغة العربية
We have modeled hydrodynamical tori in the Klu{z}niak-Lee pseudo-Newtonian potential. The tori in equilibrium were perturbed with uniform sub-sonic velocity fields: vertical, radial and diagonal respectively, and allowed to evolve in time. We identify the eigenmodes corresponding to those of slender tori. The results of our simulations are relevant to the investigation of high-frequency quasi-periodic oscillations observed in stellar-mass black hole binaries.
Context. The high-frequency quasi-periodic oscillations (HF QPOs) in neutron star and stellar-mass black hole X-ray binaries may be the result of a resonance between the radial and vertical epicyclic oscillations in strong gravity. Aims. In this pape
We write down and apply the linearized fluid and gravitational equations consistent with pseudo-Newtonian simulations, whereby Newtonian hydrodynamics is used with a pseudo-Newtonian monopole and standard Newtonian gravity for higher multipoles. We t
Context. Some microquasars exhibit millisecond quasi-periodic oscillations (QPO) that are likely related to phenomena occuring in the immediate vicinity of the central black hole. Oscillations of accretion tori have been proposed to model these QPOs.
The mixed morphology class of supernova remnants has centrally peaked X-ray emission along with a shell-like morphology in radio emission. White & Long proposed that these remnants are evolving in a cloudy medium wherein the clouds are evaporated via
The non-Newtonian behavior of a monodisperse concentrated dispersion of spherical particles was investigated using a direct numerical simulation method, that takes into account hydrodynamic interactions and thermal fluctuations accurately. Simulation