ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral signature of oscillating slender tori surrounding Kerr black holes

148   0   0.0 ( 0 )
 نشر من قبل Frederic H. Vincent
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Some microquasars exhibit millisecond quasi-periodic oscillations (QPO) that are likely related to phenomena occuring in the immediate vicinity of the central black hole. Oscillations of accretion tori have been proposed to model these QPOs. Aims. Here, we aim at determining the observable spectral signature of slender accretion tori surrounding Kerr black holes. We analyze the impact of the inclination and spin parameters on the power spectra. Methods. Ray-traced power spectra of slender tori oscillation modes are computed in the Kerr metric. Results. We show that the power spectral densities of oscillating tori are very sensitive to the inclination and spin parameters. This strong dependency of the temporal spectra on inclination and spin may lead to observable constraints of these parameters. Conclusions. This work goes a step further in the analysis of the oscillating torus QPO model. It is part of a long-term study that will ultimately lead to comparison with observed data.



قيم البحث

اقرأ أيضاً

We present a comprehensive numerical study of the dynamics of relativistic axisymmetric accretion tori with a power-law distribution of specific angular momentum orbiting in the background spacetime of a Kerr black hole. By combining general relativi stic hydrodynamics simulations with a linear perturbative approach we investigate the main dynamical properties of these objects over a large parameter space. The astrophysical implications of our results extend and improve two interesting results that have been recently reported in the literature. Firstly, the induced quasi-periodic variation of the mass quadrupole moment makes relativistic tori of nuclear matter densities, as those formed during the last stages of binary neutron star mergers, promising sources of gravitational radiation, potentially detectable by interferometric instruments. Secondly, $p$-mode oscillations in relativistic tori of low rest-mass densities could be used to explain high frequency quasi-periodic oscillations observed in X-ray binaries containing a black hole candidate under conditions more generic than those considered so far.
We simulate an oscillating purely hydrodynamical torus with constant specific angular mo- mentum around a Schwarzschild black hole. The goal is to search for quasi-periodic oscil- lations (QPOs) in the light curve of the torus. The initial torus setu p is subjected to radial, vertical and diagonal (combination of radial and vertical) velocity perturbations. The hydro- dynamical simulations are performed using the general relativistic magnetohydrodynamics code Cosmos++ and ray-traced using the GYOTO code. We found that a horizontal velocity perturbation triggers the radial and plus modes, while a vertical velocity perturbation trig- gers the vertical and X modes. The diagonal perturbation gives a combination of the modes triggered in the radial and vertical perturbations.
188 - Tim Johannsen 2015
Very-long baseline interferometric observations have resolved structure on scales of only a few Schwarzschild radii around the supermassive black holes at the centers of our Galaxy and M87. In the near future, such observations are expected to image the shadows of these black holes together with a bright and narrow ring surrounding their shadows. For a Kerr black hole, the shape of this photon ring is nearly circular unless the black hole spins very rapidly. Whether or not, however, astrophysical black holes are truly described by the Kerr metric as encapsulated in the no-hair theorem still remains an untested assumption. For black holes that differ from Kerr black holes, photon rings have been shown numerically to be asymmetric for small to intermediate spins. In this paper, I calculate semi-analytic expressions of the shapes of photon rings around black holes described by a new Kerr-like metric which is valid for all spins. I show that photon rings in this spacetime are affected by two types of deviations from the Kerr metric which can cause the ring shape to be highly asymmetric. I argue that the ring asymmetry is a direct measure of a potential violation of the no-hair theorem and that both types of deviations can be detected independently if the mass and distance of the black hole are known. In addition, I obtain approximate expressions of the diameters, displacements, and asymmetries of photon rings around Kerr and Kerr-like black holes.
We study the dynamics of radiation pressure supported tori around Schwarzschild black holes, focusing on their oscillatory response to an external perturbation. Using KORAL, a general relativistic radiation hydrodynamics code capable of modeling all radiative regimes from the optically thick to the optically thin, we monitor a sample of models at different initial temperatures and opacities, evolving them in two spatial dimensions for $sim 165$ orbital periods. The dynamics of models with high opacity is very similar to that of purely hydrodynamics models, and it is characterized by regular oscillations which are visible also in the light curves. As the opacity is decreased, the tori quickly and violently migrate towards the gas-pressure dominated regime, collapsing towards the equatorial plane. When the spectra of the $L_2$ norm of the mass density are considered, high frequency inertial-acoustic modes of oscillations are detected (with the fundamental mode at a frequency $68 M_{rm BH}^{-1},rm Hz$), in close analogy to the phenomenology of purely hydrodynamic models. An additional mode of oscillation, at a frequency $129 M_{rm BH}^{-1},rm Hz$, is also found, which can be unambiguously attributed to the radiation. The spectra extracted from the light curves are typically more noisy, indicating that in a real observation such modes would not be easily detected.
Accretion flows with pressure gradients permit the existence of standing waves which may be responsible for observed quasi-periodic oscillations (QPOs) in X-ray binaries. We present a comprehensive treatment of the linear modes of a hydrodynamic, non -self-gravitating, polytropic slender torus, with arbitrary specific angular momentum distribution, orbiting in an arbitrary axisymmetric spacetime with reflection symmetry. We discuss the physical nature of the modes, present general analytic expressions and illustrations for those which are low order, and show that they can be excited in numerical simulations of relativistic tori. The mode oscillation spectrum simplifies dramatically for near Keplerian angular momentum distributions, which appear to be generic in global simulations of the magnetorotational instability. We discuss our results in light of observations of high frequency QPOs, and point out the existence of a new pair of modes which can be in an approximate 3:2 ratio for arbitrary black hole spins and angular momentum distributions, provided the torus is radiation pressure dominated. This mode pair consists of the axisymmetric vertical epicyclic mode and the lowest order axisymmetric breathing mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا