ترغب بنشر مسار تعليمي؟ اضغط هنا

Codeword Stabilized Quantum Codes for Asymmetric Channels

95   0   0.0 ( 0 )
 نشر من قبل Bei Zeng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a method to adapt the codeword stabilized (CWS) quantum code framework to the problem of finding asymmetric quantum codes. We focus on the corresponding Pauli error models for amplitude damping noise and phase damping noise. In particular, we look at codes for Pauli error models that correct one or two amplitude damping errors. Applying local Clifford operations on graph states, we are able to exhaustively search for all possible codes up to length $9$. With a similar method, we also look at codes for the Pauli error model that detect a single amplitude error and detect multiple phase damping errors. Many new codes with good parameters are found, including nonadditive codes and degenerate codes.



قيم البحث

اقرأ أيضاً

147 - Xin Wang , Mark M. Wilde 2019
This paper develops the resource theory of asymmetric distinguishability for quantum channels, generalizing the related resource theory for states [arXiv:1010.1030; arXiv:1905.11629]. The key constituents of the channel resource theory are quantum ch annel boxes, consisting of a pair of quantum channels, which can be manipulated for free by means of an arbitrary quantum superchannel (the most general physical transformation of a quantum channel). One main question of the resource theory is the approximate channel box transformation problem, in which the goal is to transform an initial channel box (or boxes) to a final channel box (or boxes), while allowing for an asymmetric error in the transformation. The channel resource theory is richer than its counterpart for states because there is a wider variety of ways in which this question can be framed, either in the one-shot or $n$-shot regimes, with the latter having parallel and sequential variants. As in our prior work [arXiv:1905.11629], we consider two special cases of the general channel box transformation problem, known as distinguishability distillation and dilution. For the one-shot case, we find that the optimal values of the various tasks are equal to the non-smooth or smooth channel min- or max-relative entropies, thus endowing all of these quantities with operational interpretations. In the asymptotic sequential setting, we prove that the exact distinguishability cost is equal to the channel max-relative entropy and the distillable distinguishability is equal to the amortized channel relative entropy of [arXiv:1808.01498]. This latter result can also be understood as a solution to Steins lemma for quantum channels in the sequential setting. Finally, the theory simplifies significantly for environment-seizable and classical--quantum channel boxes.
We derive critical noise levels for Gallager codes on asymmetric channels as a function of the input bias and the temperature. Using a statistical mechanics approach we study the space of codewords and the entropy in the various decoding regimes. We further discuss the relation of the convergence of the message passing algorithm with the endogeny property and complexity, characterizing solutions of recursive equations of distributions for cavity fields.
We present new constructions of codes for asymmetric channels for both binary and nonbinary alphabets, based on methods of generalized code concatenation. For the binary asymmetric channel, our methods construct nonlinear single-error-correcting code s from ternary outer codes. We show that some of the Varshamov-Tenengolts-Constantin-Rao codes, a class of binary nonlinear codes for this channel, have a nice structure when viewed as ternary codes. In many cases, our ternary construction yields even better codes. For the nonbinary asymmetric channel, our methods construct linear codes for many lengths and distances which are superior to the linear codes of the same length capable of correcting the same number of symmetric errors. In the binary case, Varshamov has shown that almost all good linear codes for the asymmetric channel are also good for the symmetric channel. Our results indicate that Varshamovs argument does not extend to the nonbinary case, i.e., one can find better linear codes for asymmetric channels than for symmetric ones.
Zero-error single-channel source coding has been studied extensively over the past decades. Its natural multi-channel generalization is however not well investigated. While the special case with multiple symmetric-alphabet channels was studied a deca de ago, codes in such setting have no advantage over single-channel codes in data compression, making them worthless in most applications. With essentially no development since the last decade, in this paper, we break the stalemate by showing that it is possible to beat single-channel source codes in terms of compression assuming asymmetric-alphabet channels. We present the multi-channel analog of several classical results in single-channel source coding, such as that a multi-channel Huffman code is an optimal tree-decodable code. We also show some evidences that finding an efficient construction of multi-channel Huffman codes may be hard. Nevertheless, we propose a suboptimal code construction whose redundancy is guaranteed to be no larger than that of an optimal single-channel source code.
One of the main problems in quantum information systems is the presence of errors due to noise, and for this reason quantum error-correcting codes (QECCs) play a key role. While most of the known codes are designed for correcting generic errors, i.e. , errors represented by arbitrary combinations of Pauli X , Y and Z operators, in this paper we investigate the design of stabilizer QECC able to correct a given number eg of generic Pauli errors, plus eZ Pauli errors of a specified type, e.g., Z errors. These codes can be of interest when the quantum channel is asymmetric in that some types of error occur more frequently than others. We first derive a generalized quantum Hamming bound for such codes, then propose a design methodology based on syndrome assignments. For example, we found a [[9,1]] quantum error-correcting code able to correct up to one generic qubit error plus one Z error in arbitrary positions. This, according to the generalized quantum Hamming bound, is the shortest code with the specified error correction capability. Finally, we evaluate analytically the performance of the new codes over asymmetric channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا