ترغب بنشر مسار تعليمي؟ اضغط هنا

Gallager error correcting codes for binary asymmetric channels

96   0   0.0 ( 0 )
 نشر من قبل Izaak Neri
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive critical noise levels for Gallager codes on asymmetric channels as a function of the input bias and the temperature. Using a statistical mechanics approach we study the space of codewords and the entropy in the various decoding regimes. We further discuss the relation of the convergence of the message passing algorithm with the endogeny property and complexity, characterizing solutions of recursive equations of distributions for cavity fields.



قيم البحث

اقرأ أيضاً

Because of its high data density and longevity, DNA is emerging as a promising candidate for satisfying increasing data storage needs. Compared to conventional storage media, however, data stored in DNA is subject to a wider range of errors resulting from various processes involved in the data storage pipeline. In this paper, we consider correcting duplication errors for both exact and noisy tandem duplications of a given length k. An exact duplication inserts a copy of a substring of length k of the sequence immediately after that substring, e.g., ACGT to ACGACGT, where k = 3, while a noisy duplication inserts a copy suffering from substitution noise, e.g., ACGT to ACGATGT. Specifically, we design codes that can correct any number of exact duplication and one noisy duplication errors, where in the noisy duplication case the copy is at Hamming distance 1 from the original. Our constructions rely upon recovering the duplication root of the stored codeword. We characterize the ways in which duplication errors manifest in the root of affected sequences and design efficient codes for correcting these error patterns. We show that the proposed construction is asymptotically optimal, in the sense that it has the same asymptotic rate as optimal codes correcting exact duplications only.
We consider network coding for networks experiencing worst-case bit-flip errors, and argue that this is a reasonable model for highly dynamic wireless network transmissions. We demonstrate that in this setup prior network error-correcting schemes can be arbitrarily far from achieving the optimal network throughput. We propose a new metric for errors under this model. Using this metric, we prove a new Hamming-type upper bound on the network capacity. We also show a commensurate lower bound based on GV-type codes that can be used for error-correction. The codes used to attain the lower bound are non-coherent (do not require prior knowledge of network topology). The end-to-end nature of our design enables our codes to be overlaid on classical distributed random linear network codes. Further, we free internal nodes from having to implement potentially computationally intensive link-by-link error-correction.
The concept of asymmetric entanglement-assisted quantum error-correcting code (asymmetric EAQECC) is introduced in this article. Codes of this type take advantage of the asymmetry in quantum errors since phase-shift errors are more probable than qudi t-flip errors. Moreover, they use pre-shared entanglement between encoder and decoder to simplify the theory of quantum error correction and increase the communication capacity. Thus, asymmetric EAQECCs can be constructed from any pair of classical linear codes over an arbitrary field. Their parameters are described and a Gilbert-Varshamov bound is presented. Explicit parameters of asymmetric EAQECCs from BCH codes are computed and examples exceeding the introduced Gilbert-Varshamov bound are shown.
Recently, Galindo et al. introduced the concept of asymmetric entanglement-assisted quantum error-correcting codes (AEAQECCs) from Calderbank-Shor-Steane (CSS) construction. In general, its difficult to determine the required number of maximally enta ngled states of an AEAQECC, which is associated with the dimension of the intersection of the two corresponding linear codes. Two linear codes are said to be a linear l-intersection pair if their intersection has dimension l. In this paper, all possible linear l-intersection pairs of MDS codes are given. As an application, we give a complete characterization of pure MDS AEAQECCs for all possible parameters.
136 - Sixia Yu , Qing Chen , C.H. Oh 2007
We introduce a purely graph-theoretical object, namely the coding clique, to construct quantum errorcorrecting codes. Almost all quantum codes constructed so far are stabilizer (additive) codes and the construction of nonadditive codes, which are pot entially more efficient, is not as well understood as that of stabilizer codes. Our graphical approach provides a unified and classical way to construct both stabilizer and nonadditive codes. In particular we have explicitly constructed the optimal ((10,24,3)) code and a family of 1-error detecting nonadditive codes with the highest encoding rate so far. In the case of stabilizer codes a thorough search becomes tangible and we have classified all the extremal stabilizer codes up to 8 qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا