ﻻ يوجد ملخص باللغة العربية
Band gap control by an external field is useful in various optical, infrared and THz applications. However, widely tunable band gaps are still not practical due to variety of reasons. Using the orthogonal tight-binding method for $pi$-electrons, we have investigated the effect of the external electric field on a subclass of monolayer chevron-type graphene nanoribbons that can be referred to as jagged graphene nanoribbons. A classification of such ribbons was proposed and band gaps for applied fields up to the SiO$_2$ breakdown strength ($1$ V/nm) were calculated. According to the tight-binding model, band gap opening (or closing) takes place for some type of jagged graphene nanoribbons in the external electric field that lays in the plane of the structure and perpendicular to its longitudinal axis. Tunability of the band gap up to $0.6$ eV is attainable for narrow ribbons. In the case of jagged ribbons with armchair edges larger jags forming a chevron pattern of the ribbon enhance the controllability of the band gap. For jagged ribbons with zigzag and armchair edges regions of linear and quadratic dependence of the band gap on the external electric field can be found that are useful in devices with controllable modulation of the band gap.
Graphene nanoribbons (GNRs) possess distinct symmetry-protected topological phases. We show, through first-principles calculations, that by applying an experimentally accessible transverse electric field (TEF), certain boron and nitrogen periodically
The electronic properties of graphene zig-zag nanoribbons with electrostatic potentials along the edges are investigated. Using the Dirac-fermion approach, we calculate the energy spectrum of an infinitely long nanoribbon of finite width $w$, termina
We theoretically investigate the one-color injection currents and shift currents in zigzag graphene nanoribbons with applying a static electric field across the ribbon, which breaks the inversion symmetry to generate nonzero second order optical resp
We study the geometric and electronic structures of silicene monolayer using density functional theory based calculations. The electronic structures of silicene show that it is a semi-metal and the charge carriers in silicene behave like massless Dir
In the phenomenon of electromagnetically induced transparency1 (EIT) of a three-level atomic system, the linear susceptibility at the dipole-allowed transition is canceled through destructive interference of the direct transition and an indirect tran