ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling Band Gap in Silicene Monolayer Using External Electric Field

80   0   0.0 ( 0 )
 نشر من قبل Kamal C
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the geometric and electronic structures of silicene monolayer using density functional theory based calculations. The electronic structures of silicene show that it is a semi-metal and the charge carriers in silicene behave like massless Dirac-Fermions since it possesses linear dispersion around Dirac point. Our results show that the band gap in silicene monolayer can be opened up at Fermi level due to an external electric field by breaking the inversion symmetry. The presence of buckling in geometric structure of silicene plays an important role in breaking the inversion symmetry. We also show that the band gap varies linearly with the strength of external electric field. Further, the value of band gap can be tuned over a wide range.

قيم البحث

اقرأ أيضاً

Monolayer 1T-WTe2 is a quantum spin Hall insulator with a gapped bulk and gapless helical edge states persisting to temperatures around 100 K. Recent studies have revealed a topological-to-trivial phase transition as well the emergence of an unconven tional, potentially topological superconducting state upon tuning the carrier concentration with gating. However, despite extensive studies, the effects of gating on the band structure and the helical edge states have not yet been established. In this work we present a combined low-temperature STM and first principles study of back-gated monolayer 1T-WTe2 films grown on graphene. Consistent with a quantum spin Hall system, the films show well-defined bulk gaps and clear edge states that span the gap. By directly measuring the density of states with STM spectroscopy, we show that the bulk band gap magnitude shows substantial changes with applied gate voltage, which is contrary to the naive expectation that a gate would rigidly shift the bands relative to the Fermi level. To explain our data, we carry out density functional theory and model Hamiltonian calculations which show that a gate electric field causes doping and inversion symmetry breaking which polarizes and spin-splits the bulk bands. Interestingly, the calculated spin splitting from the effective Rashba-like spin-orbit coupling can be in the tens of meV for the electric fields in the experiment, which may be useful for spintronics applications. Our work reveals the strong effect of electric fields on the bulk band structure of monolayer 1T-WTe2, which will play a critical role in our understanding of gate-induced phenomena in this system.
We report magneto-optical spectroscopy of gated monolayer MoS$_2$ in high magnetic fields up to 28T and obtain new insights on the many-body interaction of neutral and charged excitons with the resident charges of distinct spin and valley texture. Fo r neutral excitons at low electron doping, we observe a nonlinear valley Zeeman shift due to dipolar spin-interactions that depends sensitively on the local carrier concentration. As the Fermi energy increases to dominate over the other relevant energy scales in the system, the magneto-optical response depends on the occupation of the fully spin-polarized Landau levels in both $K/K^{prime}$ valleys. This manifests itself in a many-body state. Our experiments demonstrate that the exciton in monolayer semiconductors is only a single particle boson close to charge neutrality. We find that away from charge neutrality it smoothly transitions into polaronic states with a distinct spin-valley flavour that is defined by the Landau level quantized spin and valley texture.
95 - Lan Chen , Hui Li , Baojie Feng 2012
The (r3xr3)R30{deg} honeycomb of silicene monolayer on Ag(111) was found to undergo a phase transition to two types of mirror-symmetric boundary-separated rhombic phases at temperatures below 40 K by scanning tunneling microscopy. The first-principle s calculations reveal that weak interactions between silicene and Ag(111) drive the spontaneous ultra buckling in the monolayer silicene, forming two energy-degenerate and mirror-symmetric (r3xr3)R30{deg} rhombic phases, in which the linear band dispersion near Dirac point (DP) and a significant gap opening (150 meV) at DP were induced. The low transition barrier between these two phases enables them interchangeable through dynamic flip-flop motion, resulting in the (r3xr3)R30{deg} honeycomb structure observed at high temperature.
The dynamics of band-gap renormalization and gain build-up in monolayer MoTe$_2$ is investigated by evaluating the non-equilibrium Dirac-Bloch equations with the incoherent carrier-carrier and carrier-phonon scattering treated via quantum-Boltzmann t ype scattering equations. For the case where an approximately $300$ fs-long high intensity optical pulse generates charge-carrier densities in the gain regime, the strong Coulomb coupling leads to a relaxation of excited carriers on a few fs time scale. The pump-pulse generation of excited carriers induces a large band-gap renormalization during the time scale of the pulse. Efficient phonon coupling leads to a subsequent carrier thermalization within a few ps, which defines the time scale for the optical gain build-up energetically close to the low-density exciton resonance.
We investigate theoretically the switching characteristics of semiconducting carbon nanotubes connected to gold electrodes under an external (gate) electric field. We find that the external introduction of holes is necessary to account for the experi mental observations. We identify metal-induced-gap states (MIGS) at the contacts and find that the MIGS of an undoped tube would not significantly affect the switching behavior, even for very short tube lengths. We also explore the miniaturization limits of nanotube transistors, and, on the basis of their switching ratio, we conclude that transistors with channels as short as 50AA would have adequate switching characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا