ﻻ يوجد ملخص باللغة العربية
We investigated whether outward Planetesimal Driven Migration (PDM) takes place or not in simulations when the self gravity of planetesimals is included. We performed $N$-body simulations of planetesimal disks with large width (0.7 - 4AU) which ranges over the ice line. The simulations consisted of two stages. The first stage simulations were carried out to see the runaway growth phase using the planetesimals of initially the same mass. The runaway growth took place both at the inner edge of the disk and at the region just outside the ice line. This result was utilized for the initial setup of the second stage simulations in which the runaway bodies just outside the ice line were replaced by the protoplanets with about the isolation mass. In the second stage simulations, the outward migration of the protoplanet was followed by the stopping of the migration due to the increase of the random velocity of the planetesimals. Due to this increase of random velocities, one of the PDM criteria derived in Minton and Levison (2014) was broken. In the current simulations, the effect of the gas disk is not considered. It is likely that the gas disk plays an important role in planetesimal driven migration, and we plan to study its effect in future papers.
Recent improvements to GPU hardware and the symplectic N-body code GENGA allow for unprecedented resolution in simulations of planet formation. In this paper, we report results from high-resolution N-body simulations of terrestrial planet formation t
We present high-resolution computer simulations of dust dynamics and planetesimal formation in turbulence generated by the magnetorotational instability. We show that the turbulent viscosity associated with magnetorotational turbulence in a non-strat
The equation of state calculated by Saumon and collaborators has been adopted in most core-accretion simulations of giant-planet formation performed to date. Since some minor errors have been found in their original paper, we present revised simulati
Forming gas giant planets by the accretion of 100 km diameter planetesimals, a typical size that results from self-gravity assisted planetesimal formation, is often thought to be inefficient. Many models therefore use small km-sized planetesimals, or
According to the sequential accretion model, giant planet formation is based first on the formation of a solid core which, when massive enough, can gravitationally bind gas from the nebula to form the envelope. In order to trigger the accretion of ga