ﻻ يوجد ملخص باللغة العربية
We apply the Bayesian framework to assess the presence of a correlation between two quantities. To do so, we estimate the probability distribution of the parameter of interest, $rho$, characterizing the strength of the correlation. We provide an implementation of these ideas and concepts using python programming language and the pyMC module in a very short ($sim$130 lines of code, heavily commented) and user-friendly program. We used this tool to assess the presence and properties of the correlation between planetary surface gravity and stellar activity level as measured by the log($R_{mathrm{HK}}$) indicator. The results of the Bayesian analysis are qualitatively similar to those obtained via p-value analysis, and support the presence of a correlation in the data. The results are more robust in their derivation and more informative, revealing interesting features such as asymmetric posterior distributions or markedly different credible intervals, and allowing for a deeper exploration. We encourage the reader interested in this kind of problem to apply our code to his/her own scientific problems. The full understanding of what the Bayesian framework is can only be gained through the insight that comes by handling priors, assessing the convergence of Monte Carlo runs, and a multitude of other practical problems. We hope to contribute so that Bayesian analysis becomes a tool in the toolkit of researchers, and they understand by experience its advantages and limitations.
The architecture of many exoplanetary systems is different from the solar system, with exoplanets being in close orbits around their host stars and having orbital periods of only a few days. We can expect interactions between the star and the exoplan
The key goals of the astrobiology community are to identify environments beyond Earth that may be habitable, and to search for signs of life in those environments. A fundamental aspect of understanding the limits of habitable environments and detecta
We discuss the impact that the next generation of Extremely Large Telescopes will have on the open astrophysical problems of resolved stellar populations. In particular, we address the interplay between multiband photometry and spectroscopy.
The search for Earth-like planets around late-type stars using ultra-stable spectrographs requires a very precise characterization of the stellar activity and the magnetic cycle of the star, since these phenomena induce radial velocity (RV) signals t
In this work we test the most widely used methods for fitting the composition fraction in data, namely maximum likelihood, $chi^2$, mean value of the distributions and mean value of the posterior probability function. We discuss the discrimination po