ترغب بنشر مسار تعليمي؟ اضغط هنا

Detailed Chemical Abundances in the r-Process-Rich Ultra-Faint Dwarf Galaxy Reticulum 2

106   0   0.0 ( 0 )
 نشر من قبل Ian Roederer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ian U. Roederer




اسأل ChatGPT حول البحث

The ultra-faint dwarf galaxy Reticulum 2 (Ret 2) was recently discovered in images obtained by the Dark Energy Survey. We have observed the four brightest red giants in Ret 2 at high spectral resolution using the Michigan/Magellan Fiber System. We present detailed abundances for as many as 20 elements per star, including 12 elements heavier than the Fe group. We confirm previous detection of high levels of r-process material in Ret 2 (mean [Eu/Fe]=+1.69+/-0.05) found in three of these stars (mean [Fe/H]=-2.88+/-0.10). The abundances closely match the r-process pattern found in the well-studied metal-poor halo star CS22892-052. Such r-process-enhanced stars have not been found in any other ultra-faint dwarf galaxy, though their existence has been predicted by at least one model. The fourth star in Ret 2 ([Fe/H]=-3.42+/-0.20) contains only trace amounts of Sr ([Sr/Fe]=-1.73+/-0.43) and no detectable heavier elements. One r-process enhanced star is also enhanced in C (natal [C/Fe]=+1.1). This is only the third such star known, which suggests that the nucleosynthesis sites leading to C and r-process enhancements are decoupled. The r-process-deficient star is enhanced in Mg ([Mg/Fe]=+0.81+/-0.14), and the other three stars show normal levels of alpha-enhancement (mean [Mg/Fe]=+0.34+/-0.03). The abundances of other alpha and Fe-group elements closely resemble those in ultra-faint dwarf galaxies and metal-poor halo stars, suggesting that the nucleosynthesis that led to the large r-process enhancements either produced no light elements or produced light-element abundance signatures indistinguishable from normal supernovae.

قيم البحث

اقرأ أيضاً

We present Magellan/M2FS, VLT/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentri c velocity of 62.8 +/- 0.5 km/s and a velocity dispersion of 3.3 +/- 0.7 km/s. The mass-to-light ratio of Ret II within its half-light radius is 470 +/- 210 Msun/Lsun, demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 km/s, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 +/- 0.09 dex, and we identify several extremely metal-poor stars with [Fe/H] < -3. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of [Fe/H] = -2.65 +/- 0.07, Ret II matches Segue~1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is log J = 18.8 +/- 0.6 Gev^2/cm^5 within 0.2 degrees, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies.
We present a chemical abundance analysis of four additional confirmed member stars of Tucana III, a Milky Way satellite galaxy candidate in the process of being tidally disrupted as it is accreted by the Galaxy. Two of these stars are centrally locat ed in the core of the galaxy while the other two stars are located in the eastern and western tidal tails. The four stars have chemical abundance patterns consistent with the one previously studied star in Tucana III: they are moderately enhanced in $r$-process elements, i.e. they have $<$[Eu/Fe]$> approx +$0.4 dex. The non-neutron-capture elements generally follow trends seen in other dwarf galaxies, including a metallicity range of 0.44 dex and the expected trend in $alpha$-elements, i.e., the lower metallicity stars have higher Ca and Ti abundance. Overall, the chemical abundance patterns of these stars suggest that Tucana III was an ultra-faint dwarf galaxy, and not a globular cluster, before being tidally disturbed. As is the case for the one other galaxy dominated by $r$-process enhanced stars, Reticulum II, Tucana IIIs stellar chemical abundances are consistent with pollution from ejecta produced by a binary neutron star merger, although a different $r$-process element or dilution gas mass is required to explain the abundances in these two galaxies if a neutron star merger is the sole source of $r$-process enhancement.
We present a detailed abundance analysis of the three brightest member stars at the top of the giant branch of the ultra-faint dwarf galaxy Grus~II. All stars exhibit a higher than expected $mathrm{[Mg/Ca]}$ ratio compared to metal-poor stars in othe r ultra-faint dwarf galaxies and in the Milky Way halo. Nucleosynthesis in high mass ($geqslant 20$M$_odot$) core-collapse supernovae has been shown to create this signature. The abundances of this small sample (3) stars suggest the chemical enrichment of Grus~II could have occurred through substantial high-mass stellar evolution and is consistent with the framework of a top-heavy initial mass function. However, with only three stars it can not be ruled out that the abundance pattern is the result of a stochastic chemical enrichment at early times in the galaxy. The most metal-rich of the three stars also possesses a small enhancement in rapid neutron-capture ($r$-process) elements. The abundance pattern of the $r$-process elements in this star matches the scaled $r$-process pattern of the solar system and $r$-process enhanced stars in other dwarf galaxies and in the Milky Way halo, hinting at a common origin for these elements across a range of environments. All current proposed astrophysical sites of $r$-process element production are associated with high-mass stars, thus the possible top-heavy initial mass function of Grus~II would increase the likelihood of any of these events occurring. The time delay between the $alpha$ and $r$-process element enrichment of the galaxy favors a neutron star merger as the origin of the $r$-process elements in Grus~II.
We present chemical abundance measurements of three stars in the ultra-faint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high resolution spectroscopic observations we measure the metallicity of the thr ee stars as well as abundance ratios of several $alpha$-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] $sim -2.6$ and are not $alpha$-enhanced ([$alpha$/Fe] $sim 0.0$). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultra-faint dwarfs and hints at an entirely different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature including extended star formation, a Population III supernova, and a possible association with the Large Magellanic Cloud.
Chemically peculiar stars in dwarf galaxies provide a window for exploring the birth environment of stars with varying chemical enrichment. We present a chemical abundance analysis of the brightest star in the newly discovered ultra-faint dwarf galax y candidate Tucana III. Because it is particularly bright for a star in an ultra-faint Milky Way satellite, we are able to measure the abundance of 28 elements, including 13 neutron-capture species. This star, DES J235532.66$-$593114.9 (DES J235532), shows a mild enhancement in neutron-capture elements associated with the $r$-process and can be classified as an $r$-I star. DES J235532 is the first $r$-I star to be discovered in an ultra-faint satellite, and Tuc III is the second extremely low-luminosity system found to contain $r$-process enriched material, after Reticulum II. Comparison of the abundance pattern of DES J235532 with $r$-I and $r$-II stars found in other dwarf galaxies and in the Milky Way halo suggests a common astrophysical origin for the neutron-capture elements seen in all $r$-process enhanced stars. We explore both internal and external scenarios for the $r$-process enrichment of Tuc III and show that with abundance patterns for additional stars it should be possible to distinguish between them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا