ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar Kinematics and Metallicities in the Ultra-Faint Dwarf Galaxy Reticulum II

190   0   0.0 ( 0 )
 نشر من قبل Joshua Simon
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Magellan/M2FS, VLT/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity of 62.8 +/- 0.5 km/s and a velocity dispersion of 3.3 +/- 0.7 km/s. The mass-to-light ratio of Ret II within its half-light radius is 470 +/- 210 Msun/Lsun, demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 km/s, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 +/- 0.09 dex, and we identify several extremely metal-poor stars with [Fe/H] < -3. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of [Fe/H] = -2.65 +/- 0.07, Ret II matches Segue~1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is log J = 18.8 +/- 0.6 Gev^2/cm^5 within 0.2 degrees, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies.



قيم البحث

اقرأ أيضاً

Binary stars can inflate the observed velocity dispersion of stars in dark matter dominated systems such as ultra-faint dwarf galaxies (UFDs). However, the population of binaries in UFDs is poorly constrained by observations, with preferred binary fr actions for individual galaxies ranging from a few percent to nearly unity. Searching for wide binaries through nearest neighbor (NN) statistics (or the two-point correlation function) has been suggested in the literature, and we apply this method for the first time to detect wide binaries in a UFD. By analyzing the positions of stars in Reticulum~II (Ret~II) from Hubble Space Telescope images, we search for angularly resolved wide binaries in Ret~II. We find that the distribution of their NN distances shows an enhancement at projected separations of $lesssim8$ arc seconds relative to a model containing no binaries. We show that such an enhancement can be explained by a binary fraction of $f_bapprox0.07^{+0.04}_{-0.03}$, with modest evidence for a smaller mean separation than is seen in the solar neighborhood. We also use the observed magnitude distribution of stars in Ret~II to constrain the initial mass function over the mass range $0.34-0.78~M_{odot}$, finding that a shallow power-law slope of $alpha = 1.10^{+0.30}_{-0.09}$ matches the data.
We present a study of the ultra-faint Milky Way dwarf satellite galaxy Tucana II using deep photometry from the 1.3m SkyMapper telescope at Siding Spring Observatory, Australia. The SkyMapper filter-set contains a metallicity-sensitive intermediate-b and $v$ filter covering the prominent Ca II K feature at 3933.7A. When combined with photometry from the SkyMapper $u, g$, and $i$ filters, we demonstrate that $v$ band photometry can be used to obtain stellar metallicities with a precision of $sim0.20$dex when [Fe/H] $> -2.5$, and $sim0.34$dex when [Fe/H] $< -2.5$. Since the $u$ and $v$ filters bracket the Balmer Jump at 3646A, we also find that the filter-set can be used to derive surface gravities. We thus derive photometric metallicities and surface gravities for all stars down to a magnitude of $gsim20$ within $sim$75 arcminutes of Tucana II. Photometric metallicity and surface gravity cuts remove nearly all foreground contamination. By incorporating Gaia proper motions, we derive quantitative membership probabilities which recover all known members on the red giant branch of Tucana II. Additionally, we identify multiple likely new members in the center of the system and candidate members several half-light radii from the center of the system. Finally, we present a metallicity distribution function derived from the photometric metallicities of likely Tucana II members. This result demonstrates the utility of wide-field imaging with the SkyMapper filter-set in studying UFDs, and in general, low surface brightness populations of metal-poor stars. Upcoming work will clarify the membership status of several distant stars identified as candidate members of Tucana II.
Aims. We use stellar line-of-sight velocities to constrain the dark matter-density profile of Eridanus 2, an ultra-faint dwarf galaxy ($M_mathrm{V} = -7.1$, $M_* approx 9 times 10^4,M_odot$). We furthermore derive constraints on fundamental propertie s of self-interacting and fuzzy dark matter scenarios. Methods. We present new observations of Eridanus 2 from MUSE-Faint, a survey of ultra-faint dwarf galaxies with MUSE on the Very Large Telescope, and determine line-of-sight velocities for stars inside the half-light radius. Combined with literature data, we have 92 stellar tracers out to twice the half-light radius. We constrain models of cold dark matter, self-interacting dark matter, and fuzzy dark matter with these tracers, using CJAM and pyGravSphere for the dynamical analysis. Results. We find substantial evidence for cold dark matter over self-interacting dark matter and weak evidence for fuzzy dark matter over cold dark matter. We find a virial mass $M_{200} sim 10^8,M_odot$ and astrophysical factors $J(alpha_mathrm{c}^J) sim 10^{11},M_odot^2,mathrm{kpc}^{-5}$ and $D(alpha_mathrm{c}^D) sim 10^2$-$10^{2.5},M_odot,mathrm{kpc}^{-2}$. We do not resolve a core ($r_mathrm{c} < 47,mathrm{pc}$, 68-% level) or soliton ($r_mathrm{sol} < 7.2,mathrm{pc}$, 68-% level). These limits are equivalent to an effective self-interaction coefficient $fGamma < 2.2 times 10^{-29},mathrm{cm}^3,mathrm{s}^{-1},mathrm{eV}^{-1},c^2$ and a fuzzy-dark-matter particle mass $m_mathrm{a} > 4.0 times 10^{-20},mathrm{eV},c^{-2}$. The constraint on self-interaction is complementary to those from gamma-ray searches. The constraint on fuzzy-dark-matter particle mass is inconsistent with those obtained for larger dwarf galaxies, suggesting that the flattened density profiles of those galaxies are not caused by fuzzy dark matter. (Abridged)
105 - Ian U. Roederer 2016
The ultra-faint dwarf galaxy Reticulum 2 (Ret 2) was recently discovered in images obtained by the Dark Energy Survey. We have observed the four brightest red giants in Ret 2 at high spectral resolution using the Michigan/Magellan Fiber System. We pr esent detailed abundances for as many as 20 elements per star, including 12 elements heavier than the Fe group. We confirm previous detection of high levels of r-process material in Ret 2 (mean [Eu/Fe]=+1.69+/-0.05) found in three of these stars (mean [Fe/H]=-2.88+/-0.10). The abundances closely match the r-process pattern found in the well-studied metal-poor halo star CS22892-052. Such r-process-enhanced stars have not been found in any other ultra-faint dwarf galaxy, though their existence has been predicted by at least one model. The fourth star in Ret 2 ([Fe/H]=-3.42+/-0.20) contains only trace amounts of Sr ([Sr/Fe]=-1.73+/-0.43) and no detectable heavier elements. One r-process enhanced star is also enhanced in C (natal [C/Fe]=+1.1). This is only the third such star known, which suggests that the nucleosynthesis sites leading to C and r-process enhancements are decoupled. The r-process-deficient star is enhanced in Mg ([Mg/Fe]=+0.81+/-0.14), and the other three stars show normal levels of alpha-enhancement (mean [Mg/Fe]=+0.34+/-0.03). The abundances of other alpha and Fe-group elements closely resemble those in ultra-faint dwarf galaxies and metal-poor halo stars, suggesting that the nucleosynthesis that led to the large r-process enhancements either produced no light elements or produced light-element abundance signatures indistinguishable from normal supernovae.
We demonstrate how the least luminous galaxies in the Universe, ultra-faint dwarf galaxies, are sensitive to their dynamical mass at the time of cosmic reionization. We select a low-mass ($sim text{1.5} times 10^{9} , text{M}_{odot}$) dark matter hal o from a cosmological volume, and perform zoom hydrodynamical simulations with multiple alternative histories using genetically modified initial conditions. Earlier forming ultra-faints have higher stellar mass today, due to a longer period of star formation before their quenching by reionization. Our histories all converge to the same final dynamical mass, demonstrating the existence of extended scatter ($geq$ 1 dex) in stellar masses at fixed halo mass due to the diversity of possible histories. One of our variants builds less than 2 % of its final dynamical mass before reionization, rapidly quenching in-situ star formation. The bulk of its final stellar mass is later grown by dry mergers, depositing stars in the galaxys outskirts and hence expanding its effective radius. This mechanism constitutes a new formation scenario for highly diffuse ($text{r}_{1 /2} sim 820 , text{pc}$, $sim 32 , text{mag arcsec}^2$), metal-poor ($big[ mathrm{Fe}, / mathrm{H} big]= -2.9$), ultra-faint ($mathcal{M}_V= -5.7$) dwarf galaxies within the reach of next-generation low surface brightness surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا