ﻻ يوجد ملخص باللغة العربية
We report on the realization of a single-electron source, where current is transported through a single-level quantum dot (Q), tunnel-coupled to two superconducting leads (S). When driven with an ac gate voltage, the experiment demonstrates electron turnstile operation. Compared to the more conventional superconductor - normal metal - superconductor turnstile, our SQS device presents a number of novel properties, including higher immunity to the unavoidable presence of non-equilibrium quasiparticles in superconducting leads. In addition, we demonstrate its ability to deliver electrons with a very narrow energy distribution.
The time-dependent transport through single-molecule magnets coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized master equation method. We investigate the transient regime induced by the periodic switching o
Direct frequency to power conversion (FPC), to be presented here, links both quantities through a known energy, like single-electron transport relates an operation frequency $f$ to the emitted current $I$ through the electron charge $e$ as $I=ef$. FP
The effects of a turnstile operation on the current-induced vibron dynamics in nanoelectromechanical systems (NEMS) are analyzed in the framework of the generalized master equation. In our simulations each turnstile cycle allows the pumping of up to
We present a low-temperature experimental test of the fluctuation theorem for electron transport through a double quantum dot. The rare entropy-consuming system trajectories are detected in the form of single charges flowing against the source-drain
We propose a scheme based on using the singlet ground state of an electron spin pair in a double quantum dot nanostructure as a suitable set-up for detecting entanglement between electron spins via the measurement of an optimal entanglement witness.