ﻻ يوجد ملخص باللغة العربية
The TeV binary system LS I +61$^circ$ 303 is known for its regular, non-thermal emission pattern which traces the orbital period of the compact object in its 26.5 day orbit around its B0 Ve star companion. The system typically presents elevated TeV emission around apastron passage with flux levels between 5% and 15% of the steady flux from the Crab Nebula (> 300 GeV). In this article, VERITAS observations of LS I +61$^circ$ 303 taken in late 2014 are presented, during which bright TeV flares around apastron at flux levels peaking above 30% of the Crab Nebula flux were detected. This is the brightest such activity from this source ever seen in the TeV regime. The strong outbursts have rise and fall times of less than a day. The short timescale of the flares, in conjunction with the observation of 10 TeV photons from LS I +61$^circ$ 303 during the flares, provides constraints on the properties of the accelerator in the source.
We study the characteristics of the TeV binary LS I +61$^circ$ 303 in radio, soft X-ray, hard X-ray, and gamma-ray (GeV and TeV) energies. The long term variability characteristics are examined as a function of the phase of the binary period of 26.49
LS I +61$^circ$ ~303 is one of around ten gamma-ray binaries detected so far which has a spectral energy distribution dominated by MeV-GeV photons. It is located at a distance of 2 kpc and consists of a compact object (black hole or neutron star) in
We present the results of observations of the TeV binary LS I +61 303 with the VERITAS telescope array between 2008 and 2010, at energies above 300 GeV. In the past, both ground-based gamma-ray telescopes VERITAS and MAGIC have reported detections of
The discovery of emission of TeV gamma rays from X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems. Here we present the pioneering effort of th
The gamma-ray binary LS I +61$^{circ}$303 is a well established source from centimeter radio up to very high energy (VHE; E$>$100 GeV). Its broadband emission shows a periodicity of $sim$26.5 days, coincident with the orbital period. A longer (super-