ﻻ يوجد ملخص باللغة العربية
The discovery of emission of TeV gamma rays from X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems. Here we present the pioneering effort of the MAGIC collaboration to understand the very high energy emission of the prototype system LS I +61 303. We report on the variable nature of the emission from LS I +61 303 and show that this emission is indeed periodic. The system shows regular outburst at TeV energies in phase phi=0.6-0.7 and detect no signal at periastron (phi~ 0.275). Furthermore we find no indication of spectral variation along the orbit of the compact object and the spectral energy distribution is compatible with a simple power law with index Gamma=2.6+-0.2_(stat)+-0.2_(sys). To answer some of the open questions concerning the emission process of the TeV radiation we conducted a multiwavelength campaign with the MAGIC telescope, XMM-Newton, and Swift in September 2007. We detect a simultaneous outburst at X-ray and TeV energies, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the strictly simultaneous X-ray/TeV flux pairs provides r=0.81 -0.21 +0.06. Here we present the observations and discuss the implications of the obtained results to the emission processes in the system.
LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy gamma-rays. The system was observed over several orbital cycles (between September 2006 and February 2007) with the VERITAS array o
LS I +61$^circ$ ~303 is one of around ten gamma-ray binaries detected so far which has a spectral energy distribution dominated by MeV-GeV photons. It is located at a distance of 2 kpc and consists of a compact object (black hole or neutron star) in
The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions
The gamma-ray binary system LS I +61 303 was studied in great detail in VHE gamma-rays in the last years by the MAGIC telescope. The VHE emission of the system exhibited a prominent periodic outburst in the orbital phases 0.6-0.7 between September 20
LS I +61 303 and LS 5039 are exceptionally rare examples of HMXBs with MeV-TeV emission, making them two of only five known or proposed gamma-ray binaries. There has been disagreement within the literature over whether these systems are microquasars,