ترغب بنشر مسار تعليمي؟ اضغط هنا

The MAGIC highlights of the gamma ray binary LS I +61 303

246   0   0.0 ( 0 )
 نشر من قبل Tobias Jogler
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of emission of TeV gamma rays from X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems. Here we present the pioneering effort of the MAGIC collaboration to understand the very high energy emission of the prototype system LS I +61 303. We report on the variable nature of the emission from LS I +61 303 and show that this emission is indeed periodic. The system shows regular outburst at TeV energies in phase phi=0.6-0.7 and detect no signal at periastron (phi~ 0.275). Furthermore we find no indication of spectral variation along the orbit of the compact object and the spectral energy distribution is compatible with a simple power law with index Gamma=2.6+-0.2_(stat)+-0.2_(sys). To answer some of the open questions concerning the emission process of the TeV radiation we conducted a multiwavelength campaign with the MAGIC telescope, XMM-Newton, and Swift in September 2007. We detect a simultaneous outburst at X-ray and TeV energies, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the strictly simultaneous X-ray/TeV flux pairs provides r=0.81 -0.21 +0.06. Here we present the observations and discuss the implications of the obtained results to the emission processes in the system.



قيم البحث

اقرأ أيضاً

LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy gamma-rays. The system was observed over several orbital cycles (between September 2006 and February 2007) with the VERITAS array o f imaging air-Cherenkov telescopes. A signal of gamma-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV corresponding to 15-20% of the flux from the Crab Nebula.
134 - D. B. Kieda 2021
LS I +61$^circ$ ~303 is one of around ten gamma-ray binaries detected so far which has a spectral energy distribution dominated by MeV-GeV photons. It is located at a distance of 2 kpc and consists of a compact object (black hole or neutron star) in an eccentric orbit around a 10-15 $M_{odot}$ Be star, with an orbital period of 26.496 days. The binary orbit modulates the emission ranging from radio to TeV energies. A second, longer, modulation period of 1667 days (the super-orbital period) has also been detected from radio to TeV observations. The VERITAS imaging atmospheric Cherenkov telescope array has been observing LS I +61$^circ$ ~303 since 2006, and has accumulated a dataset that fully covers the entire orbit. Increased coverage of the source in the very-high-energy band is currently underway to provide more results on the modulation pattern, super-orbital period, and orbit-to-orbit variability at the highest energies. The spectral measurements at the highest energies will reveal more information about gamma-ray production/absorption mechanisms, the nature of the compact object, and the particle acceleration mechanism. Using >150 hrs of VERITAS data, we present a detailed study of the spectral energy distribution and periodic behavior of this rare gamma-ray source type at very-high energy.
The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions along eccentric orbits. Despite this, the nature of some of these systems, and of the accelerated particles producing the VHE emission, is unclear. To answer some of these open questions, we conducted a multiwavelength campaign of the VHE gamma-ray emitting X-ray binary LS I +61 303 including the MAGIC telescope, XMM-Newton, and Swift during 60% of an orbit in 2007 September. We detect a simultaneous outburst at X-ray and VHE bands, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the simultaneous X-ray/VHE pairs obtained during the outburst yields a correlation coefficient of r=0.97, while a linear fit to all simultaneous pairs provides r=0.81. Since a variable absorption of the VHE emission towards the observer is not expected for the data reported here, the correlation found indicates a simultaneity in the emission processes. Assuming that they are dominated by a single particle population, either hadronic or leptonic, the X-ray/VHE flux ratio favors leptonic models. This fact, together with the detected photon indices, suggests that in LS I +61 303 the X-rays are the result of synchrotron radiation of the same electrons that produce VHE emission as a result of inverse Compton scattering of stellar photons.
175 - T. Jogler , O. Blanch 2011
The gamma-ray binary system LS I +61 303 was studied in great detail in VHE gamma-rays in the last years by the MAGIC telescope. The VHE emission of the system exhibited a prominent periodic outburst in the orbital phases 0.6-0.7 between September 20 05 to January 2008. In Fall 2008 the Fermi collaboration reported as well periodic emission in the MeV to GeV energy range, but with a shifted outburst in the phases 0.35-0.45. MAGIC observed again LS I+61 303 in 2009 with the twice more sensitive stereo mode to allow for detailed correlation studies between the VHE gamma-ray and Fermi/LAT energy band. Here we present our new results, which show a significant reduction in the VHE gamma-ray flux in the phase of the periodic outburst by almost one order of magnitude compared to our previous measurements. Furthermore, the 0.1-phase averaged light curve shows no significant outburst, but a rather constant flux. Here we will discuss the implications of our results for future gamma-ray studies of LS I +61 303.
LS I +61 303 and LS 5039 are exceptionally rare examples of HMXBs with MeV-TeV emission, making them two of only five known or proposed gamma-ray binaries. There has been disagreement within the literature over whether these systems are microquasars, with stellar winds accreting onto a compact object to produce high energy emission and relativistic jets, or whether their emission properties might be better explained by a relativistic pulsar wind colliding with the stellar wind. Here we present an attempt to detect radio pulsars in both systems with the Green Bank Telescope. The upper limits of flux density are between 4.1-14.5 uJy, and we discuss the null results of the search. Our spherically symmetric model of the wind of LS 5039 demonstrates that any pulsar emission will be strongly absorbed by the dense wind unless there is an evacuated region formed by a relativistic colliding wind shock. LS I +61 303 contains a rapidly rotating Be star whose wind is concentrated near the stellar equator. As long as the pulsar is not eclipsed by the circumstellar disk or viewed through the densest wind regions, detecting pulsed emission may be possible during part of the orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا