ﻻ يوجد ملخص باللغة العربية
The row (resp. column) rank profile of a matrix describes the stair-case shape of its row (resp. column) echelon form. We here propose a new matrix invariant, the rank profile matrix, summarizing all information on the row and column rank profiles of all the leading sub-matrices. We show that this normal form exists and is unique over any ring, provided that the notion of McCoys rank is used, in the presence of zero divisors. We then explore the conditions for a Gaussian elimination algorithm to compute all or part of this invariant, through the corresponding PLUQ decomposition. This enlarges the set of known Elimination variants that compute row or column rank profiles. As a consequence a new Crout base case variant significantly improves the practical efficiency of previously known implementations over a finite field. With matrices of very small rank, we also generalize the techniques of Storjohann and Yang to the computation of the rank profile matrix, achieving an $(r^omega+mn)^{1+o(1)}$ time complexity for an $m times n$ matrix of rank $r$, where $omega$ is the exponent of matrix multiplication. Finally, by give connections to the Bruhat decomposition, and several of its variants and generalizations. Thus, our algorithmic improvements for the PLUQ factorization, and their implementations, directly apply to these decompositions. In particular, we show how a PLUQ decomposition revealing the rank profile matrix also reveals both a row and a column echelon form of the input matrix or of any of its leading sub-matrices, by a simple post-processing made of row and column permutations.
The row (resp. column) rank profile of a matrix describes the staircase shape of its row (resp. column) echelon form. In an ISSAC13 paper, we proposed a recursive Gaussian elimination that can compute simultaneously the row and column rank profiles o
The complexity of matrix multiplication (hereafter MM) has been intensively studied since 1969, when Strassen surprisingly decreased the exponent 3 in the cubic cost of the straightforward classical MM to log 2 (7) $approx$ 2.8074. Applications to so
We give a brief introduction to FORM, a symbolic programming language for massive batch operations, designed by J.A.M. Vermaseren. In particular, we stress various methods to efficiently use FORM under the UNIX operating system. Several scripts and e
We present new algorithms to detect and correct errors in the product of two matrices, or the inverse of a matrix, over an arbitrary field. Our algorithms do not require any additional information or encoding other than the original inputs and the er
We study a variant of the univariate approximate GCD problem, where the coefficients of one polynomial f(x)are known exactly, whereas the coefficients of the second polynomial g(x)may be perturbed. Our approach relies on the properties of the matrix