ﻻ يوجد ملخص باللغة العربية
The row (resp. column) rank profile of a matrix describes the staircase shape of its row (resp. column) echelon form. In an ISSAC13 paper, we proposed a recursive Gaussian elimination that can compute simultaneously the row and column rank profiles of a matrix as well as those of all of its leading sub-matrices, in the same time as state of the art Gaussian elimination algorithms. Here we first study the conditions making a Gaus-sian elimination algorithm reveal this information. Therefore, we propose the definition of a new matrix invariant, the rank profile matrix, summarizing all information on the row and column rank profiles of all the leading sub-matrices. We also explore the conditions for a Gaussian elimination algorithm to compute all or part of this invariant, through the corresponding PLUQ decomposition. As a consequence, we show that the classical iterative CUP decomposition algorithm can actually be adapted to compute the rank profile matrix. Used, in a Crout variant, as a base-case to our ISSAC13 implementation, it delivers a significant improvement in efficiency. Second, the row (resp. column) echelon form of a matrix are usually computed via different dedicated triangular decompositions. We show here that, from some PLUQ decompositions, it is possible to recover the row and column echelon forms of a matrix and of any of its leading sub-matrices thanks to an elementary post-processing algorithm.
The row (resp. column) rank profile of a matrix describes the stair-case shape of its row (resp. column) echelon form. We here propose a new matrix invariant, the rank profile matrix, summarizing all information on the row and column rank profiles of
We present a novel recursive algorithm for reducing a symmetric matrix to a triangular factorization which reveals the rank profile matrix. That is, the algorithm computes a factorization $mathbf{P}^Tmathbf{A}mathbf{P} = mathbf{L}mathbf{D}mathbf{L}^T
The class of quasiseparable matrices is defined by a pair of bounds, called the quasiseparable orders, on the ranks of the maximal sub-matrices entirely located in their strictly lower and upper triangular parts. These arise naturally in applications
Let $Ssubset R^n$ be a compact basic semi-algebraic set defined as the real solution set of multivariate polynomial inequalities with rational coefficients. We design an algorithm which takes as input a polynomial system defining $S$ and an integer $
We present a deterministic algorithm which computes the multilinear factors of multivariate lacunary polynomials over number fields. Its complexity is polynomial in $ell^n$ where $ell$ is the lacunary size of the input polynomial and $n$ its number o