ترغب بنشر مسار تعليمي؟ اضغط هنا

RV variable, hot post-AGB stars from the MUCHFUSS project - Classification, atmospheric parameters, formation scenarios

56   0   0.0 ( 0 )
 نشر من قبل Nicole Reindl M.Sc.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the course of the MUCHFUSS project we have recently discovered four radial velocity (RV) variable, hot (Teff $approx$ 80,000 - 110,000 K) post-asymptotic giant branch (AGB) stars. Among them, we found the first known RV variable O(He) star, the only second known RV variable PG 1159 close binary candidate, as well as the first two naked (i.e., without planetary nebula (PN)) H-rich post-AGB stars of spectral type O(H) that show significant RV variations. We present a non-LTE spectral analysis of these stars along with one further O(H)-type star whose RV variations were found to be not significant. We also report the discovery of an far-infrared excess in the case of the PG 1159 star. None of the stars in our sample displays nebular emission lines, which can be explained well in terms of a very late thermal pulse evolution in the case of the PG 1159 star. The missing PNe around the O(H)-type stars seem strange, since we find that several central stars of PNe have much longer post-AGB times. Besides the non-ejection of a PN, the occurrence of a late thermal pulse, or the re-accretion of the PN in the previous post-AGB evolution offer possible explanations for those stars not harbouring a PN (anymore). In case of the O(He) star J0757 we speculate that it might have been previously part of a compact He transferring binary system. In this scenario, the mass transfer must have stopped after a certain time, leaving behind a low mass close companion that could be responsible for the extreme RV shift of 107.0 $pm$ 22.0 km/s measured within only 31 min.


قيم البحث

اقرأ أيضاً

182 - S. Geier , T. Kupfer , U. Heber 2015
The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims to find sdBs with compact companions like massive white dwarfs, neutron stars or black holes. Here we provide classifications, atmospheric parameters and a complete radial velocity (RV) catalogue containing 1914 single measurements for an sample of 177 hot subluminous stars discovered based on SDSS DR7. 110 stars show significant RV variability, while 67 qualify as candidates. We constrain the fraction of close massive compact companions {of hydrogen-rich hot subdwarfs} in our sample to be smaller than $sim1.3%$, which is already close to the theoretical predictions. However, the sample might still contain such binaries with longer periods exceeding $sim8,{rm d}$. We detect a mismatch between the $Delta RV_{rm max}$-distribution of the sdB and the more evolved sdOB and sdO stars, which challenges our understanding of their evolutionary connection. Furthermore, irregular RV variations of unknown origin with amplitudes of up to $sim180,{rm km,s^{-1}}$ on timescales of years, days and even hours have been detected in some He-sdO stars. They might be connected to irregular photometric variations in some cases.
126 - S. Geier , H. Hirsch , A. Tillich 2011
The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding sdBs with compact companions like supermassive white dwarfs (M>1.0 Msun), neutron stars or black holes. The existence of such systems is predi cted by binary evolution theory and recent discoveries indicate that they are likely to exist in our Galaxy. A determination of the orbital parameters is sufficient to put a lower limit on the companion mass by calculating the binary mass function. If this lower limit exceeds the Chandrasekhar mass and no sign of a companion is visible in the spectra, the existence of a massive compact companion is proven without the need for any additional assumptions. We identified about 1100 hot subdwarf stars from the SDSS by colour selection and visual inspection of their spectra. Stars with high velocities have been reobserved and individual SDSS spectra have been analysed. In total 127 radial velocity variable subdwarfs have been discovered. Binaries with high RV shifts and binaries with moderate shifts within short timespans have the highest probability of hosting massive compact companions. Atmospheric parameters of 69 hot subdwarfs in these binary systems have been determined by means of a quantitative spectral analysis. The atmospheric parameter distribution of the selected sample does not differ from previously studied samples of hot subdwarfs. The systems are considered the best candidates to search for massive compact companions by follow-up time resolved spectroscopy.
The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions (white dwarfs with masses $M>1.0 {rm M_{odot}}$, neutron stars or black holes). The existen ce of such systems is predicted by binary evolution calculations and some candidate systems have been found. We identified $simeq1100$ hot subdwarf stars from the Sloan Digital Sky Survey (SDSS). Stars with high velocities have been reobserved and individual SDSS spectra have been analysed. About 70 radial velocity variable subdwarfs have been selected as good candidates for follow-up time resolved spectroscopy to derive orbital parameters and photometric follow-up to search for features like eclipses in the light curves. Up to now we found nine close binary sdBs with short orbital periods ranging from $simeq0.07 {rm d}$ to $1.5 {rm d}$. Two of them are eclipsing binaries with companions that are most likely of substellar nature.
We present a catalog of 166 spectroscopically identified hot subdwarf stars from LAMOST DR1, 44 of which show the characteristics of cool companions in their optical spectra. Atmospheric parameters of 122 non-composite spectra subdwarf stars were mea sured by fitting the profiles of hydrogen (H) and helium (He) lines with synthetic spectra from non-LTE model atmospheres. Most of the sdB stars scatter near the Extreme Horizontal Branch in the $T_{rm eff}-log{g}$ diagram and two well defined groups can be outlined. A clustering of He-enriched sdO stars appears near $T_{rm eff}=45,000$ K and $log(g) = 5.8$. The sdB population separates into several nearly parallel sequences in the $T_{rm eff}-{rm He}$ abundance diagram with clumps corresponding to those in the $T_{rm eff}-log{g}$ diagram. Over $38,000$ K (sdO) stars show abundance extremes, they are either He-rich or He-deficient and we observe only a few stars in the $ -1 < log(y) < 0$ abundance range. With increasing temperature these extremes become less prominent and the He abundance approaches to $log(y)sim-0.5$. A unique property of our sample is that it covers a large range in apparent magnitudes and galactic latitudes, therefore it contains a mix of stars from different populations and galactic environments. Our results are consistent with the findings of Hirsch (2009) and we conclude that He-rich and He-deficient sdB stars ($log(y) < 1$) probably origin from different populations. We also find that most sdO and sdB stars lie in a narrow strip in the luminosity and helium abundance plane, which suggests that these atmospheric parameters are correlated.
While the first binary post-AGB stars were serendipitously discovered, the distinct characteristics of their Spectral Energy Distribution (SED) allowed us to launch a more systematic search for binaries. We selected post-AGB objects which show a broa d dust excess often starting already at H or K, pointing to the presence of a gravitationally bound dusty disc in the system. We started a very extensive multi-wavelength study of those systems and here we report on our radial velocity and photometric monitoring results for six stars of early F type, which are pulsators of small amplitude. To determine the radial velocity of low signal-to-noise time-series, we constructed dedicated auto-correlation masks. The radial velocity variations were subjected to detailed analysis to differentiate between pulsational variability and variability due to orbital motion. Finally orbital minimalisation was performed to constrain the orbital elements. All of the six objects are binaries, with orbital periods ranging from 120 to 1800 days. Five systems have non-circular orbits. The mass functions range from 0.004 to 0.57 solar mass and the companions are likely unevolved objects of (very) low initial mass. We argue that these binaries must have been subject to severe binary interaction when the primary was a cool supergiant. Although the origin of the circumstellar disc is not well understood, the disc is generally believed to be formed during this strong interaction phase. The eccentric orbits of these highly evolved objects remain poorly understood. With the measured orbits and mass functions we conclude that the circumbinary discs seem to have a major impact on the evolution of a significant fraction of binary systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا