ﻻ يوجد ملخص باللغة العربية
Several years of academic and industrial research efforts have converged to a common understanding on fundamental security building blocks for the upcoming Vehicular Communication (VC) systems. There is a growing consensus towards deploying a Vehicular Public-Key Infrastructure (VPKI) enables pseudonymous authentication, with standardization efforts in that direction. However, there are still significant technical issues that remain unresolved. Existing proposals for instantiating the VPKI either need additional detailed specifications or enhanced security and privacy features. Equally important, there is limited experimental work that establishes the VPKI efficiency and scalability. In this paper, we are concerned with exactly these issues. We leverage the common VPKI approach and contribute an enhanced system with precisely defined, novel features that improve its resilience and the user privacy protection. In particular, we depart from the common assumption that the VPKI entities are fully trusted and we improve user privacy in the face of an honest-but-curious security infrastructure. Moreover, we fully implement our VPKI, in a standard-compliant manner, and we perform an extensive evaluation. Along with stronger protection and richer functionality, our system achieves very significant performance improvement over prior systems - contributing the most advanced VPKI towards deployment.
Several years of academic and industrial research efforts have converged to a common understanding on fundamental security building blocks for the upcoming Vehicular Communication (VC) systems. There is a growing consensus towards deploying a special
Vehicular Communication (VC) systems will greatly enhance intelligent transportation systems. But their security and the protection of their users privacy are a prerequisite for deployment. Efforts in industry and academia brought forth a multitude o
In spite of progress in securing Vehicular Communication (VC) systems, there is no consensus on how to distribute Certificate Revocation Lists (CRLs). The main challenges lie exactly in (i) crafting an efficient and timely distribution of CRLs for nu
Radio Access Networks (RAN) tends to be more distributed in the 5G and beyond, in order to provide low latency and flexible on-demanding services. In this paper, Blockchain-enabled Radio Access Networks (BE-RAN) is proposed as a novel decentralized R
The OpenMosix approach is a good solution to build powerful and scalable computing farms. Furthermore an easy management infrastructure is implemented using diskless nodes and network boot procedures. In HENP environment, the choice of OpenMosix has