ترغب بنشر مسار تعليمي؟ اضغط هنا

Selection maintaining protein stability at equilibrium

144   0   0.0 ( 0 )
 نشر من قبل Sanzo Miyazawa
 تاريخ النشر 2015
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف Sanzo Miyazawa




اسأل ChatGPT حول البحث

The common understanding of protein evolution has been that neutral or slightly deleterious mutations are fixed by random drift, and evolutionary rate is determined primarily by the proportion of neutral mutations. However, recent studies have revealed that highly expressed genes evolve slowly because of fitness costs due to misfolded proteins. Here we study selection maintaining protein stability. Protein fitness is taken to be $s = kappa exp(betaDelta G) (1 - exp(betaDeltaDelta G))$, where $s$ and $DeltaDelta G$ are selective advantage and stability change of a mutant protein, $Delta G$ is the folding free energy of the wild-type protein, and $kappa$ represents protein abundance and indispensability. The distribution of $DeltaDelta G$ is approximated to be a bi-Gaussian function, which represents structurally slightly- or highly-constrained sites. Also, the mean of the distribution is negatively proportional to $Delta G$. The evolution of this gene has an equilibrium ($Delta G_e$) of protein stability, the range of which is consistent with experimental values. The probability distribution of $K_a/K_s$, the ratio of nonsynonymous to synonymous substitution rate per site, over fixed mutants in the vicinity of the equilibrium shows that nearly neutral selection is predominant only in low-abundant, non-essential proteins of $Delta G_e > -2.5$ kcal/mol. In the other proteins, positive selection on stabilizing mutations is significant to maintain protein stability at equilibrium as well as random drift on slightly negative mutations, although the average $langle K_a/K_s rangle$ is less than 1. Slow evolutionary rates can be caused by high protein abundance/indispensability, which produces positive shifts of $DeltaDelta G$ through decreasing $Delta G_e$, and by strong structural constraints, which directly make $DeltaDelta G$ more positive.



قيم البحث

اقرأ أيضاً

66 - Sanzo Miyazawa 2016
The probability distribution of sequences with maximum entropy that satisfies a given amino acid composition at each site and a given pairwise amino acid frequency at each site pair is a Boltzmann distribution with $exp(-psi_N)$, where the total inte raction $psi_N$ is represented as the sum of one body and pairwise interactions. A protein folding theory based on the random energy model (REM) indicates that the equilibrium ensemble of natural protein sequences is a canonical ensemble characterized by $exp(-Delta G_{ND}/k_B T_s)$ or by $exp(- G_{N}/k_B T_s)$ if an amino acid composition is kept constant, meaning $psi_N = Delta G_{ND}/k_B T_s +$ constant, where $Delta G_{ND} equiv G_N - G_D$, $G_N$ and $G_D$ are the native and denatured free energies, and $T_s$ is the effective temperature of natural selection. Here, we examine interaction changes ($Delta psi_N$) due to single nucleotide nonsynonymous mutations, and have found that the variance of their $Delta psi_N$ over all sites hardly depends on the $psi_N$ of each homologous sequence, indicating that the variance of $Delta G_N (= k_B T_s Delta psi_N)$ is nearly constant irrespective of protein families. As a result, $T_s$ is estimated from the ratio of the variance of $Delta psi_N$ to that of a reference protein, which is determined by a direct comparison between $DeltaDelta psi_{ND} (simeq Delta psi_N)$ and experimental $DeltaDelta G_{ND}$. Based on the REM, glass transition temperature $T_g$ and $Delta G_{ND}$ are estimated from $T_s$ and experimental melting temperatures ($T_m$) for 14 protein domains. The estimates of $Delta G_{ND}$ agree well with their experimental values for 5 proteins, and those of $T_s$ and $T_g$ are all within a reasonable range. This method is coarse-grained but much simpler in estimating $T_s$, $T_g$ and $DeltaDelta G_{ND}$ than previous methods.
We study a continuous-time dynamical system that models the evolving distribution of genotypes in an infinite population where genomes may have infinitely many or even a continuum of loci, mutations accumulate along lineages without back-mutation, ad ded mutations reduce fitness, and recombination occurs on a faster time scale than mutation and selection. Some features of the model, such as existence and uniqueness of solutions and convergence to the dynamical system of an approximating sequence of discrete time models, were presented in earlier work by Evans, Steinsaltz, and Wachter for quite general selective costs. Here we study a special case where the selective cost of a genotype with a given accumulation of ancestral mutations from a wild type ancestor is a sum of costs attributable to each individual mutation plus successive interaction contributions from each $k$-tuple of mutations for $k$ up to some finite ``degree. Using ideas from complex chemical reaction networks and a novel Lyapunov function, we establish that the phenomenon of mutation-selection balance occurs for such selection costs under mild conditions. That is, we show that the dynamical system has a unique equilibrium and that it converges to this equilibrium from all initial conditions.
In evolutionary games the fitness of individuals is not constant but depends on the relative abundance of the various strategies in the population. Here we study general games among n strategies in populations of large but finite size. We explore sto chastic evolutionary dynamics under weak selection, but for any mutation rate. We analyze the frequency dependent Moran process in well-mixed populations, but almost identical results are found for the Wright-Fisher and Pairwise Comparison processes. Surprisingly simple conditions specify whether a strategy is more abundant on average than 1/n, or than another strategy, in the mutation-selection equilibrium. We find one condition that holds for low mutation rate and another condition that holds for high mutation rate. A linear combination of these two conditions holds for any mutation rate. Our results allow a complete characterization of n*n games in the limit of weak selection.
Proteins are only moderately stable. It has long been debated whether this narrow range of stabilities is solely a result of neutral drift towards lower stability or purifying selection against excess stability is also at work - for which no experime ntal evidence was found so far. Here we show that mutations outside the active site in the essential E. coli enzyme adenylate kinase result in stability-dependent increase in substrate inhibition by AMP, thereby impairing overall enzyme activity at high stability. Such inhibition caused substantial fitness defects not only in the presence of excess substrate but also under physiological conditions. In the latter case, substrate inhibition caused differential accumulation of AMP in the stationary phase for the inhibition prone mutants. Further, we show that changes in flux through Adk could accurately describe the variation in fitness effects. Taken together, these data suggest that selection against substrate inhibition and hence excess stability may have resulted in a narrow range of optimal stability observed for modern proteins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا