ﻻ يوجد ملخص باللغة العربية
The common understanding of protein evolution has been that neutral or slightly deleterious mutations are fixed by random drift, and evolutionary rate is determined primarily by the proportion of neutral mutations. However, recent studies have revealed that highly expressed genes evolve slowly because of fitness costs due to misfolded proteins. Here we study selection maintaining protein stability. Protein fitness is taken to be $s = kappa exp(betaDelta G) (1 - exp(betaDeltaDelta G))$, where $s$ and $DeltaDelta G$ are selective advantage and stability change of a mutant protein, $Delta G$ is the folding free energy of the wild-type protein, and $kappa$ represents protein abundance and indispensability. The distribution of $DeltaDelta G$ is approximated to be a bi-Gaussian function, which represents structurally slightly- or highly-constrained sites. Also, the mean of the distribution is negatively proportional to $Delta G$. The evolution of this gene has an equilibrium ($Delta G_e$) of protein stability, the range of which is consistent with experimental values. The probability distribution of $K_a/K_s$, the ratio of nonsynonymous to synonymous substitution rate per site, over fixed mutants in the vicinity of the equilibrium shows that nearly neutral selection is predominant only in low-abundant, non-essential proteins of $Delta G_e > -2.5$ kcal/mol. In the other proteins, positive selection on stabilizing mutations is significant to maintain protein stability at equilibrium as well as random drift on slightly negative mutations, although the average $langle K_a/K_s rangle$ is less than 1. Slow evolutionary rates can be caused by high protein abundance/indispensability, which produces positive shifts of $DeltaDelta G$ through decreasing $Delta G_e$, and by strong structural constraints, which directly make $DeltaDelta G$ more positive.
The probability distribution of sequences with maximum entropy that satisfies a given amino acid composition at each site and a given pairwise amino acid frequency at each site pair is a Boltzmann distribution with $exp(-psi_N)$, where the total inte
We study a continuous-time dynamical system that models the evolving distribution of genotypes in an infinite population where genomes may have infinitely many or even a continuum of loci, mutations accumulate along lineages without back-mutation, ad
In evolutionary games the fitness of individuals is not constant but depends on the relative abundance of the various strategies in the population. Here we study general games among n strategies in populations of large but finite size. We explore sto
Proteins are only moderately stable. It has long been debated whether this narrow range of stabilities is solely a result of neutral drift towards lower stability or purifying selection against excess stability is also at work - for which no experime