ﻻ يوجد ملخص باللغة العربية
Proteins are only moderately stable. It has long been debated whether this narrow range of stabilities is solely a result of neutral drift towards lower stability or purifying selection against excess stability is also at work - for which no experimental evidence was found so far. Here we show that mutations outside the active site in the essential E. coli enzyme adenylate kinase result in stability-dependent increase in substrate inhibition by AMP, thereby impairing overall enzyme activity at high stability. Such inhibition caused substantial fitness defects not only in the presence of excess substrate but also under physiological conditions. In the latter case, substrate inhibition caused differential accumulation of AMP in the stationary phase for the inhibition prone mutants. Further, we show that changes in flux through Adk could accurately describe the variation in fitness effects. Taken together, these data suggest that selection against substrate inhibition and hence excess stability may have resulted in a narrow range of optimal stability observed for modern proteins.
The common understanding of protein evolution has been that neutral or slightly deleterious mutations are fixed by random drift, and evolutionary rate is determined primarily by the proportion of neutral mutations. However, recent studies have reveal
Background: Typically, proteins perform key biological functions by interacting with each other. As a consequence, predicting which protein pairs interact is a fundamental problem. Experimental methods are slow, expensive, and may be error prone. Man
The zinc finger structure where a Zn2+ ion binds to 4 cysteine or histidine amino acids in a tetrahedral structure is very common motif of nucleic acid binding proteins. The corresponding interaction model is present in 3% of the genes of human genom
We use a coarse-grained model to study the conformational changes in two barley proteins, LTP1 and its ligand adduct isoform LTP1b, that result from their adsorption to the air-water interface. The model introduces the interface through hydropathy in