ﻻ يوجد ملخص باللغة العربية
We summarize the higher-loop perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Our final aim is to compare with results from lattice simulations in order to expose the genuinely non-perturbative content of the latter. By means of Numerical Stochastic Perturbation Theory we compute the ghost and gluon propagators in Landau gauge up to three and four loops. We present results in the infinite volume and $a to 0$ limits, based on a general fitting strategy.
This is the first of a series of two papers on the perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Our final aim is to eventually compare with results from lattice simulations in order to enlight the genuine
This is the second of two papers devoted to the perturbative computation of the ghost and gluon propagators in SU(3) Lattice Gauge Theory. Such a computation should enable a comparison with results from lattice simulations in order to reveal the genu
We address the issue of bound state in the two-nucleon system in lattice QCD. Our study is made in the quenched approximation at the lattice spacing of a = 0.128 fm with a heavy quark mass corresponding to m_pi = 0.8 GeV. To distinguish a bound state
We perform a detailed, fully-correlated study of the chiral behavior of the pion mass and decay constant, based on 2+1 flavor lattice QCD simulations. These calculations are implemented using tree-level, O(a)-improved Wilson fermions, at four values
In this contribution we present an exploratory study of several novel methods for numerical stochastic perturbation theory. For the investigation we consider observables defined through the gradient flow in the simple {phi}^4 theory.