ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong electron correlation behind the superconductivity in Ce-free and Ce-underdoped high-Tc T-cuprates

116   0   0.0 ( 0 )
 نشر من قبل Tadashi Adachi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to investigate the electronic state of Ce-free and Ce-underdoped high-Tc cuprates with the so-called T structure, we have performed muon-spin-relaxation (muSR) and specific-heat measurements of Ce-free T-La_1.8_Eu_0.2_CuO_4+d_ (T-LECO) polycrystals and Ce-underdoped T-Pr_1.3-x_La_0.7_Ce_x_CuO_4+d_ (T-PLCCO) single crystals with x=0.10. The muSR spectra of the reduced superconducting samples of both T-LECO with Tc=15K and T-PLCCO with x=0.10 and Tc=27K have revealed that a short-range magnetic order coexists with the superconductivity in the ground state. The formation of a short-range magnetic order due to a tiny amount of excess oxygen in the reduced superconducting samples strongly suggest that the Ce-free and Ce-underdoped T-cuprates are regarded as strongly correlated electron systems.

قيم البحث

اقرأ أيضاً

High-pressure neutron powder diffraction, muon-spin rotation and magnetization studies of the structural, magnetic and the superconducting properties of the Ce-underdoped superconducting (SC) electron-doped cuprate system T-Pr_1.3-xLa_0.7Ce_xCuO_4 wi th x = 0.1 are reported. A strong reduction of the lattice constants a and c is observed under pressure. However, no indication of any pressure induced phase transition from T to T structure is observed up to the maximum applied pressure of p = 11 GPa. Large and non-linear increase of the short-range magnetic order temperature T_so in T-Pr_1.3-xLa_0.7Ce_xCuO_4 (x = 0.1) was observed under pressure. Simultaneously pressure causes a non-linear decrease of the SC transition temperature T_c. All these experiments establish the short-range magnetic order as an intrinsic and a new competing phase in SC T-Pr_1.2La_0.7Ce_0.1CuO_4. The observed pressure effects may be interpreted in terms of the improved nesting conditions through the reduction of the in-plane and out-of-plane lattice constants upon hydrostatic pressure.
In this review article, we show our recent results relating to the undoped (Ce-free) superconductivity in the electron-doped high-Tc cuprates with the so-called T structure. For an introduction, we briefly mention the characteristics of the electron- doped T-cuprates, including the reduction annealing, conventional phase diagram and undoped superconductivity. Then, our transport and magnetic results and results relating to the superconducting pairing symmetry of the undoped and underdoped T-cuprates are shown. Collaborating spectroscopic and nuclear magnetic resonance results are also shown briefly. It has been found that, through the reduction annealing, a strongly localized state of carriers accompanied by an antiferromagnetic pseudogap in the as-grown samples changes to a metallic and superconducting state with a short-range magnetic order in the reduced superconducting samples. The formation of the short-range magnetic order due to a very small amount of excess oxygen in the reduced superconducting samples suggests that the T-cuprates exhibiting the undoped superconductivity in the parent compounds are regarded as strongly correlated electron systems, as well as the hole-doped high-Tc cuprates. We show our proposed electronic structure model to understand the undoped superconductivity. Finally, unsolved future issues of the T-cuprates are discussed.
We demonstrate that most features ascribed to strong correlation effects in various spectroscopies of the cuprates are captured by a calculation of the self-energy incorporating effects of spin and charge fluctuations. The self energy is calculated o ver the full doping range of electron-doped cuprates from half filling to the overdoped system. The spectral function reveals four subbands, two widely split incoherent bands representing the remnant of the split Hubbard bands, and two additional coherent, spin- and charge-dressed in-gap bands split by a spin-density wave, which collapses in the overdoped regime. The incoherent features persist to high doping, producing a remnant Mott gap in the optical spectra, while transitions between the in-gap states lead to pseudogap features in the mid-infrared.
82 - S. Shimizu 2007
We report Cu- and F-NMR studies on a four-layered high-temperature superconductor Ba2Ca3Cu4O8F2(0234F(2.0)) with apical fluorine (F-1), an undoped 55 K-superconductor with a nominal Cu2+ valence on average. We reveal that this compound exhibits the a ntiferromagnetism (AFM) with a Neel temperature TN=100 K despite being a Tc= 55 K-superconductor. Through a comparison with a related tri-layered cuprate Ba2Ca2Cu3O6F2 (0223F(2.0)), it is demonstrated that electrons are transferred from the inner plane (IP) to the outer plane (OP) in 0234F(2.0) and 0223F(2.0), confirming the self-doped high-temperature superconductivity (HTSC) having electron and hole doping in a single compound. Remarlably, uniform mixing of AFM and HTSC takes place in both the electron-doped OPs and the hole-doped IPs in 0234F(2.0).
Explaining the mechanism of superconductivity in the high-$T_c$ cuprates requires an understanding of what causes electrons to form Cooper pairs. Pairing can be mediated by phonons, the screened Coulomb force, spin or charge fluctuations, excitons, o r by a combination of these. An excitonic pairing mechanism has been postulated, but experimental evidence for coupling between conduction electrons and excitons in the cuprates is sporadic. Here we use resonant inelastic x-ray scattering (RIXS) to monitor the temperature dependence of the $underline{d}d$ exciton spectrum of Bi$_2$Sr$_2$CaCu$_2$O$_{8-x}$ (Bi-2212) crystals with different charge carrier concentrations. We observe a significant change of the $underline{d}d$ exciton spectra when the materials pass from the normal state into the superconductor state. From theoretical modeling, we determine the strength of the coupling between the electrons and the excitons. Our observations show that the coupling to excitons can be strong enough to play an important role in stabilizing the superconducting state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا