ترغب بنشر مسار تعليمي؟ اضغط هنا

Neurons as an Information-theoretic Engine

75   0   0.0 ( 0 )
 نشر من قبل Hideaki Shimazaki
 تاريخ النشر 2015
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English
 تأليف Hideaki Shimazaki




اسأل ChatGPT حول البحث

We show that dynamical gain modulation of neurons stimulus response is described as an information-theoretic cycle that generates entropy associated with the stimulus-related activity from entropy produced by the modulation. To articulate this theory, we describe stimulus-evoked activity of a neural population based on the maximum entropy principle with constraints on two types of overlapping activities, one that is controlled by stimulus conditions and the other, termed internal activity, that is regulated internally in an organism. We demonstrate that modulation of the internal activity realises gain control of stimulus response, and controls stimulus information. A cycle of neural dynamics is then introduced to model information processing by the neurons during which the stimulus information is dynamically enhanced by the internal gain-modulation mechanism. Based on the conservation law for entropy production, we demonstrate that the cycle generates entropy ascribed to the stimulus-related activity using entropy supplied by the internal mechanism, analogously to a heat engine that produces work from heat. We provide an efficient cycle that achieves the highest entropic efficiency to retain the stimulus information. The theory allows us to quantify efficiency of the internal computation and its theoretical limit.



قيم البحث

اقرأ أيضاً

Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a emph{multi-step} cognitive task involving w ith consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed base on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and behaves obvious differences restricted to order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse function connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.
136 - Sungho Hong , 2006
White noise methods are a powerful tool for characterizing the computation performed by neural systems. These methods allow one to identify the feature or features that a neural system extracts from a complex input, and to determine how these feature s are combined to drive the systems spiking response. These methods have also been applied to characterize the input/output relations of single neurons driven by synaptic inputs, simulated by direct current injection. To interpret the results of white noise analysis of single neurons, we would like to understand how the obtained feature space of a single neuron maps onto the biophysical properties of the membrane, in particular the dynamics of ion channels. Here, through analysis of a simple dynamical model neuron, we draw explicit connections between the output of a white noise analysis and the underlying dynamical system. We find that under certain assumptions, the form of the relevant features is well defined by the parameters of the dynamical system. Further, we show that under some conditions, the feature space is spanned by the spike-triggered average and its successive order time derivatives.
The cerebral cortex is composed of multiple cortical areas that exert a wide variety of brain functions. Although human brain neurons are genetically and areally mosaic, the three-dimensional structural differences between neurons in different brain areas or between the neurons of different individuals have not been delineated. Here, we report a nanometer-scale geometric analysis of brain tissues of the superior temporal gyrus of 4 schizophrenia and 4 control cases by using synchrotron radiation nanotomography. The results of the analysis and a comparison with results for the anterior cingulate cortex indicated that 1) neuron structures are dissimilar between brain areas and that 2) the dissimilarity varies from case to case. The structural diverseness was mainly observed in terms of the neurite curvature that inversely correlates with the diameters of the neurites and spines. The analysis also revealed the geometric differences between the neurons of the schizophrenia and control cases, suggesting that neuron structure is associated with brain function. The area dependency of the neuron structure and its diverseness between individuals should represent the individuality of brain functions.
This study extends the mathematical model of emotion dimensions that we previously proposed (Yanagisawa, et al. 2019, Front Comput Neurosci) to consider perceived complexity as well as novelty, as a source of arousal potential. Berlynes hedonic funct ion of arousal potential (or the inverse U-shaped curve, the so-called Wundt curve) is assumed. We modeled the arousal potential as information contents to be processed in the brain after sensory stimuli are perceived (or recognized), which we termed sensory surprisal. We mathematically demonstrated that sensory surprisal represents free energy, and it is equivalent to a summation of information gain (or information from novelty) and perceived complexity (or information from complexity), which are the collative variables forming the arousal potential. We demonstrated empirical evidence with visual stimuli (profile shapes of butterfly) supporting the hypothesis that the summation of perceived novelty and complexity shapes the inverse U-shaped beauty function. We discussed the potential of free energy as a mathematical principle explaining emotion initiators.
The broad concept of emergence is instrumental in various of the most challenging open scientific questions -- yet, few quantitative theories of what constitutes emergent phenomena have been proposed. This article introduces a formal theory of causal emergence in multivariate systems, which studies the relationship between the dynamics of parts of a system and macroscopic features of interest. Our theory provides a quantitative definition of downward causation, and introduces a complementary modality of emergent behaviour -- which we refer to as causal decoupling. Moreover, the theory allows practical criteria that can be efficiently calculated in large systems, making our framework applicable in a range of scenarios of practical interest. We illustrate our findings in a number of case studies, including Conways Game of Life, Reynolds flocking model, and neural activity as measured by electrocorticography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا