ﻻ يوجد ملخص باللغة العربية
Markov chain Monte Carlo (MCMC) produces a correlated sample for estimating expectations with respect to a target distribution. A fundamental question is when should sampling stop so that we have good estimates of the desired quantities? The key to answering this question lies in assessing the Monte Carlo error through a multivariate Markov chain central limit theorem (CLT). The multivariate nature of this Monte Carlo error largely has been ignored in the MCMC literature. We present a multivariate framework for terminating simulation in MCMC. We define a multivariate effective sample size, estimating which requires strongly consistent estimators of the covariance matrix in the Markov chain CLT; a property we show for the multivariate batch means estimator. We then provide a lower bound on the number of minimum effective samples required for a desired level of precision. This lower bound depends on the problem only in the dimension of the expectation being estimated, and not on the underlying stochastic process. This result is obtained by drawing a connection between terminating simulation via effective sample size and terminating simulation using a relative standard deviation fixed-volume sequential stopping rule; which we demonstrate is an asymptotically valid procedure. The finite sample properties of the proposed method are demonstrated in a variety of examples.
This paper proposes a family of weighted batch means variance estimators, which are computationally efficient and can be conveniently applied in practice. The focus is on Markov chain Monte Carlo simulations and estimation of the asymptotic covarianc
We propose Adaptive Incremental Mixture Markov chain Monte Carlo (AIMM), a novel approach to sample from challenging probability distributions defined on a general state-space. While adaptive MCMC methods usually update a parametric proposal kernel w
We consider Markov chain Monte Carlo methods for calculating conditional p values of statistical models for count data arising in Box-Behnken designs. The statistical model we consider is a discrete version of the first-order model in the response su
Markov Chain Monte Carlo (MCMC) requires to evaluate the full data likelihood at different parameter values iteratively and is often computationally infeasible for large data sets. In this paper, we propose to approximate the log-likelihood with subs
Markov chain models are used in various fields, such behavioral sciences or econometrics. Although the goodness of fit of the model is usually assessed by large sample approximation, it is desirable to use conditional tests if the sample size is not