ﻻ يوجد ملخص باللغة العربية
Markov Chain Monte Carlo (MCMC) requires to evaluate the full data likelihood at different parameter values iteratively and is often computationally infeasible for large data sets. In this paper, we propose to approximate the log-likelihood with subsamples taken according to nonuniform subsampling probabilities, and derive the most likely optimal (MLO) subsampling probabilities for better approximation. Compared with existing subsampled MCMC algorithm with equal subsampling probabilities, our MLO subsampled MCMC has a higher estimation efficiency with the same subsampling ratio. We also derive a formula using the asymptotic distribution of the subsampled log-likelihood to determine the required subsample size in each MCMC iteration for a given level of precision. This formula is used to develop an adaptive version of the MLO subsampled MCMC algorithm. Numerical experiments demonstrate that the proposed method outperforms the uniform subsampled MCMC.
We propose Adaptive Incremental Mixture Markov chain Monte Carlo (AIMM), a novel approach to sample from challenging probability distributions defined on a general state-space. While adaptive MCMC methods usually update a parametric proposal kernel w
In this paper, we study the asymptotic variance of sample path averages for inhomogeneous Markov chains that evolve alternatingly according to two different $pi$-reversible Markov transition kernels $P$ and $Q$. More specifically, our main result all
A novel class of non-reversible Markov chain Monte Carlo schemes relying on continuous-time piecewise-deterministic Markov Processes has recently emerged. In these algorithms, the state of the Markov process evolves according to a deterministic dynam
Markov chain Monte Carlo (MCMC) produces a correlated sample for estimating expectations with respect to a target distribution. A fundamental question is when should sampling stop so that we have good estimates of the desired quantities? The key to a
This paper proposes a family of weighted batch means variance estimators, which are computationally efficient and can be conveniently applied in practice. The focus is on Markov chain Monte Carlo simulations and estimation of the asymptotic covarianc